Skip to main content

Domain Application of High Performance Computing in Earth Science: An Example of Dust Storm Modeling and Visualization

  • Chapter
  • First Online:
  • 583 Accesses

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 23))

Abstract

Earth science models often raise computational challenges, requiring a large number of computing resources, and serial computing using a single computer is not sufficient. Further, earth science datasets produced by observations and models are increasingly larger and complex, exceeding the limits of most analysis and visualization tools, as well as the capacities of a single computer. HPC enabled modeling, analysis, and visualization solutions are needed to better understand the behaviors, dynamics, and interactions of the complex earth system and its sub-systems. However, there are a wide range of computing paradigms (e.g., Cluster, Grid, GPU, Volunteer and Cloud Computing), and associated parallel programming standards and libraries (e.g., MPI/OpenMPI, CUDA, and MapReduce). In addition, the selection of specific HPC technologies varies widely for different datasets, computational models, and user requirements. To demystify the HPC technologies and unfold different computing options for scientists, this chapter first presents a generalized HPC architecture for earth science applications, and then demonstrates how such a generalized architecture can be instantiated to support the modeling and visualization of dust storms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Saidi, A., Walker, D. W., & Rana, O. F. (2012). On-demand transmission model for remote visualization using image-based rendering. Concurrency and Computation: Practice and Experience, 24(18), 2328–2345.

    Article  Google Scholar 

  • Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., et al. (2015). ParaView catalyst: Enabling in situ data analysis and visualization. In Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (pp. 25–29). ACM.

    Google Scholar 

  • Baillie, C., Michalakes, J., & Skålin, R. (1997). Regional weather modeling on parallel computers. New York: Elsevier.

    Book  Google Scholar 

  • Bandaragoda, C. J., Castronova, A., Istanbulluoglu, E., Strauch, R., Nudurupati, S. S., Phuong, J., et al. (2019). Enabling collaborative numerical Modeling in Earth sciences using Knowledge Infrastructure. Environmental Modelling & Software., 120, 104424.

    Article  Google Scholar 

  • Bauer, A. C., Abbasi, H., Ahrens, J., Childs, H., Geveci, B., Klasky, S., et al. (2016). In situ methods, infrastructures, and applications on high performance computing platforms. Computer Graphics Forum, 35(3), 577–597.

    Article  Google Scholar 

  • Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., et al. (2005). The earth system grid: Supporting the next generation of climate modeling research. Proceedings of the IEEE, 93(3), 485–495.

    Article  Google Scholar 

  • Childs, H. (2012, October). VisIt: An end-user tool for visualizing and analyzing very large data. In High Performance Visualization-Enabling Extreme-Scale Scientific Insight (pp. 357–372).

    Google Scholar 

  • Collins, N., Theurich, G., Deluca, C., Suarez, M., Trayanov, A., Balaji, V., et al. (2005). Design and implementation of components in the Earth System Modeling Framework. International Journal of High Performance Computing Applications, 19(3), 341–350.

    Article  Google Scholar 

  • Cosulschi, M., Cuzzocrea, A., & De Virgilio, R. (2013). Implementing BFS-based traversals of RDF graphs over MapReduce efficiently. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (pp. 569–574). IEEE.

    Google Scholar 

  • Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.

    Article  Google Scholar 

  • Dennis, J. M., Vertenstein, M., Worley, P. H., Mirin, A. A., Craig, A. P., Jacob, R., et al. (2012). Computational performance of ultra-high-resolution capability in the Community Earth System Model. The International Journal of High Performance Computing Applications, 26(1), 5–16.

    Article  Google Scholar 

  • Feng, K., Sun, X. H., Yang, X., & Zhou, S. (2018, September). SciDP: Support HPC and big data applications via integrated scientific data processing. In 2018 IEEE International Conference on Cluster Computing (CLUSTER) (pp. 114–123). IEEE.

    Google Scholar 

  • Gropp, W. (2002). MPICH2: A new start for MPI implementations. In European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting (p. 7). Springer.

    Google Scholar 

  • Hawick, K. A., Coddington, P. D., & James, H. A. (2003). Distributed frameworks and parallel algorithms for processing large-scale geographic data. Parallel Computing, 29(10), 1297–1333.

    Article  Google Scholar 

  • Hill, C., DeLuca, C., Balaji, S. M., & Ad, S. (2004). The architecture of the earth system modeling framework. Computing in Science & Engineering, 6(1), 18–28.

    Article  Google Scholar 

  • Hoffman, F. M., Larson, J. W., Mills, R. T., Brooks, B.-G. J., Ganguly, A. R., Hargrove, W. W., et al. (2011). Data mining in Earth system science (DMESS 2011). Procedia Computer Science, 4, 1450–1455.

    Article  Google Scholar 

  • Huang, Q., Li, J., & Li, Z. (2018). A geospatial hybrid cloud platform based on multi-sourced computing and model resources for geosciences. International Journal of Digital Earth, 11, 1184.

    Article  Google Scholar 

  • Huang, Q., & Yang, C. (2011). Optimizing grid computing configuration and scheduling for geospatial analysis: An example with interpolating DEM. Computers & Geosciences, 37(2), 165–176.

    Article  Google Scholar 

  • Huang, Q., Yang, C., Benedict, K., Chen, S., Rezgui, A., & Xie, J. (2013b). Utilize cloud computing to support dust storm forecasting. International Journal of Digital Earth, 6(4), 338–355.

    Article  Google Scholar 

  • Huang, Q., Yang, C., Benedict, K., Rezgui, A., Xie, J., Xia, J., et al. (2013a). Using adaptively coupled models and high-performance computing for enabling the computability of dust storm forecasting. International Journal of Geographical Information Science, 27(4), 765–784.

    Article  Google Scholar 

  • Huntington, J. L., Hegewisch, K. C., Daudert, B., Morton, C. G., Abatzoglou, J. T., McEvoy, D. J., et al. (2017). Climate Engine: Cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bulletin of the American Meteorological Society, 98(11), 2397–2410.

    Article  Google Scholar 

  • Janjic, Z. (2003). A nonhydrostatic model based on a new approach. Meteorology and Atmospheric Physics, 82(1–4), 271–285.

    Article  Google Scholar 

  • Janjić, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927–945.

    Article  Google Scholar 

  • Jiang, H., Chen, Y., Qiao, Z., Weng, T.-H., & Li, K.-C. (2015). Scaling up MapReduce-based big data processing on multi-GPU systems. Cluster Computing, 18(1), 369–383.

    Article  Google Scholar 

  • Kim, C. (2014). Theoretical analysis of constructing wavelet synopsis on partitioned data sets. Multimedia Tools and Applications, 74(7), 2417–2432.

    Article  Google Scholar 

  • Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013). Visualizing 3D/4D environmental data using many-core graphics processing units (GPUs) and multi-core central processing units (CPUs). Computers & Geosciences, 59, 78–89.

    Article  Google Scholar 

  • Li, W., & Wang, S. (2017). PolarGlobe: A web-wide virtual globe system for visualizing multidimensional, time-varying, big climate data. International Journal of Geographical Information Science, 31(8), 1562–1582.

    Article  Google Scholar 

  • Massonnet, F., Ménégoz, M., Acosta, M. C., Yepes-Arbós, X., Exarchou, E., & Doblas-Reyes, F. J. (2018). Reproducibility of an Earth System Model under a change in computing environment (No. UCL-Université Catholique de Louvain). Technical Report. Barcelona Supercomputing Center.

    Google Scholar 

  • Moreland, K., Sewell, C., Usher, W., Lo, L.-t., Meredith, J., Pugmire, D., et al. (2016). VTK-m: Accelerating the visualization toolkit for massively threaded architectures. IEEE Computer Graphics and Applications, 36(3), 48–58.

    Article  Google Scholar 

  • Nickovic, S., Kallos, G., Papadopoulos, A., & Kakaliagou, O. (2001). A model for prediction of desert dust cycle in the atmosphere. Journal of Geophysical Research: Atmospheres, 106(D16), 18113–18129.

    Article  Google Scholar 

  • Oeser, J., Bunge, H.-P., & Mohr, M. (2006). Cluster design in the Earth Sciences tethys. In International Conference on High Performance Computing and Communications. (pp. 31–40). Springer.

    Google Scholar 

  • Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden, S., et al. (2007). High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innovations in Systems and Software Engineering, 3(3), 157–165.

    Article  Google Scholar 

  • Prims, O. T., Castrillo, M., Acosta, M. C., Mula-Valls, O., Lorente, A. S., Serradell, K., et al. (2018). Finding, analysing and solving MPI communication bottlenecks in Earth System models. Journal of Computational Science, 36, 100864.

    Article  Google Scholar 

  • Project TG. (2017). The Globus Project. Retrieved from http://www.globus.org

  • Ramachandran, R., Lynnes, C., Bingham, A. W., & Quam, B. M. (2018). Enabling analytics in the cloud for earth science data.

    Google Scholar 

  • Ross, R., & Latham, R. (2006). PVFS: A parallel file system. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (p. 34). ACM.

    Google Scholar 

  • Schwan, P. (2003). Lustre: Building a file system for 1000-node clusters. In Proceedings of the 2003 Linux Symposium, vol. 2003.

    Google Scholar 

  • Shapiro, M., Shukla, J., Brunet, G., Nobre, C., Béland, M., Dole, R., et al. (2010). An earth-system prediction initiative for the twenty-first century. Bulletin of the American Meteorological Society, 91(10), 1377–1388.

    Article  Google Scholar 

  • Tang, W., & Feng, W. (2017). Parallel map projection of vector-based big spatial data: Coupling cloud computing with graphics processing units. Computers, Environment and Urban Systems, 61, 187–197.

    Article  Google Scholar 

  • Unidata. (2019). Unidata. Retrieved 14, August, 2019, from http://www.unidata.ucar.edu/software/

  • Vecchiola, C., Pandey, S., & Buyya, R. (2009, December). High-performance cloud computing: A view of scientific applications. In 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks (pp. 4–16), Kaohsiung, Taiwan, December 14–16. IEEE.

    Google Scholar 

  • Wang, S., & Liu, Y. (2009). TeraGrid GIScience gateway: Bridging cyberinfrastructure and GIScience. International Journal of Geographical Information Science, 23(5), 631–656.

    Article  Google Scholar 

  • Williams, D. N., Ananthakrishnan, R., Bernholdt, D., Bharathi, S., Brown, D., Chen, M., et al. (2009). The earth system grid: Enabling access to multimodel climate simulation data. Bulletin of the American Meteorological Society, 90(2), 195–206.

    Article  Google Scholar 

  • Williams, D. N., Bremer, T., Doutriaux, C., Patchett, J., Williams, S., Shipman, G., et al. (2013). Ultrascale visualization of climate data. Computer, 46(9), 68–76.

    Article  Google Scholar 

  • Xie, J., Yang, C., Zhou, B., & Huang, Q. (2010). High-performance computing for the simulation of dust storms. Computers, Environment and Urban Systems, 34(4), 278–290.

    Article  Google Scholar 

  • Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017). Big Data and cloud computing: Innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 13–53.

    Article  Google Scholar 

  • Zhang, T., Li, J., Liu, Q., & Huang, Q. (2016). A cloud-enabled remote visualization tool for time-varying climate data analytics. Environmental Modelling & Software, 75, 513–518.

    Article  Google Scholar 

  • Zhang, X., & Xu, F. (2013). Survey of research on big data storage. In 2013 12th International Symposium on Distributed Computing and Applications to Business, Engineering & Science (DCABES) (pp. 76–80). IEEE.

    Google Scholar 

  • Zhao, J., Tao, J., & Streit, A. (2014). Enabling collaborative MapReduce on the Cloud with a single-sign-on mechanism. Computing, 98, 55–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunying Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Q., Li, J., Zhang, T. (2020). Domain Application of High Performance Computing in Earth Science: An Example of Dust Storm Modeling and Visualization. In: Tang, W., Wang, S. (eds) High Performance Computing for Geospatial Applications. Geotechnologies and the Environment, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-47998-5_14

Download citation

Publish with us

Policies and ethics