Aboelsoud, M., Siddique, O., Morales, A., Seol, Y., & Al-Qadi, M. (2018). Early biliary drainage is associated with favourable outcomes in critically-ill patients with acute cholangitis. Przeglad Gastroenterologiczny, 13(1), 16–21.
PubMed
PubMed Central
Google Scholar
Amazon Comprehend Medical. Retrieved from December 2018, from https://aws.amazon.com/comprehend/medical/.
Bailly, S., Meyfroidt, G., & Timsit, J. F. (2018). What’s new ICU in 2050: Big data and machine learning. Intensive Care Medicine, 44, 1524–1527.
CrossRef
Google Scholar
Block, J. P., Bailey, L. C., Gillman, M. W., Lunsford, D., Boone-Heinonen, J., Cleveland, L. P., et al. (2018). PCORnet antibiotics and childhood growth study: Process for cohort creation and cohort description. Academic Pediatric, 18(5), 569–576.
CrossRef
Google Scholar
Collins, F. S., Hudson, K. L., Briggs, J. P., & Lauer, M. S. (2014). PCORnet: Turning a dream into reality. Journal of the American Medical Informatics Association, 21(4), 576–577.
CrossRef
Google Scholar
Computing NCfB. (2018). i2b2 (Informatics for Integrating Biology and the Bedside). Retrieved October 2018, from https://www.i2b2.org.
Deliberato, R. O., Ko, S., Komorowski, M., de La Hoz Armengol, M. A., Frushicheva, M.P., & Raffa, J., et al. (2018, March). Severity of illness may misclassify critically ill obese patients. Crit Care, 46(3), 394–400.
Google Scholar
Dernoncourt, F., Lee, J. Y., Uzuner, O., & Szolovitz, P. (2017). De-identification of patients notes with recurrent neural networks. Journal of the American Medical Informatics Association, 24(3), 596–606.
PubMed
Google Scholar
Desautels, T., Calvert, J., Hoffman, J., Jay, M., Kerem, Y., Shieh, L., et al. (2016). Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach. JMIR Med Inform., 4(3), e28.
CrossRef
Google Scholar
Desautels, T., Das, R., Calvert, J., Trivedi, M., Summers, C., Wales, D. J., et al. (2017). Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: A cross-sectional machine learning approach. British Medical Journal Open, 7(9), e017199.
Google Scholar
Farhan, W., Wang, Z., Huang, Y., Wang, S., Wang, F., & Jiang, X. (2016). A predictive model for medical events based on contextual embedding of temporal sequences. JMIR Medical Informatics, 4(4), e39.
CrossRef
Google Scholar
Feng, M., McSparron, J. I., Kien, D. T., Stone, D. J., Roberts, D. H., Schwartzstein, R. M., et al. (2018). Transthoracic echocardiography and mortality in sepsis: Analysis of the MIMIC-III database. Intensive Care Medicine, 44(6), 884–892.
CAS
CrossRef
Google Scholar
Fleurence, R. L., Curtis, L. H., Califf, R. M., Platt, R., Selby, J. V., & Brown, J. S. (2014). Launching PCORnet, a national patient-centered clinical research network. Journal of the American Medical Informatics Association, 21(4), 578–582.
CrossRef
Google Scholar
Ghassemi, M., Marshall, J., Singh, N., Stone, D. J., & Celi, L. A. (2014). Leveraging a critical care database: Selective serotonin reuptake inhibitor use prior to ICU admission is associated with increased hospital mortality. Chest, 145(4), 745–752.
CrossRef
Google Scholar
Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. W., Feng, M., Ghassemi, M., et al. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035.
CAS
CrossRef
Google Scholar
Johnson, A. E. W., Aboab, J., Raffa, J., Pollard, T. J., Deliberato, R. O., Celi, L. A., et al. (2018). A comparative analysis of sepsis identification methods in a electronic database. Critical Care, 46(4), 494–499.
CrossRef
Google Scholar
Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., Faisal, A. A. (2018, October 22). The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. [Epub ahead of print].
Google Scholar
List of databases which have been converted to OMOP CDM. (2018). Retrieved October 2018, from http://www.ohdsi.org/web/wiki/doku.php?id=resources:2018_data_network.
Neamatullah, I., Douglas, M. M., Lehman, L. W., Reisner, A., Villarroel, M., Long, W. J., et al. (2008). Automated de-identification of free text medical records. BMC Medical Informatics and Decision Making, 24(8), 32.
CrossRef
Google Scholar
Observational Health Data Sciences and Informatics (OHDSI) OMOP Common Data Model V5.0. Retrieved October 2018, from https://www.ohdsi.org.
Pollard, T. J., Johnson, A. E. W., Raffa, J. D., Celi, L. A., Mark, R. G., & Badawi, O. (2018). The eICU collaborative research database, a freely available multi-center database for critical care research. Scientific Data, 5, 180178.
CrossRef
Google Scholar
Sanchez-Pinto, L. N., Luo, Y., Churpek, M. M. (2018, May 9). Big data and data science in critical care. Chest pii: S0012-3692(18)30725-6 [Epub ahead of print].
Google Scholar
Sandfort,V., Johnson, A. E. W., Kunz, L. M., Vargas, J. D., Rosing, D. R. (2018). Prolonged elevated heart rate and 90-day survival in acutely Ill patients: Data from the MIMIC-III database. Journal of Intensive Care Medicine, 885066618756828.
Google Scholar
Serpa Neto, A, Deliberato, R. O., Johnson, A. E. W., Bos, L. D., Amorim, P., Pereira, S. M., et al. (2018, October 5). Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Medicine [Epub ahead of print].
Google Scholar
Waudby-Smith, I. E. R., Tran, N., Dubin, J. A., & Lee, J. (2018). Sentiment in nursing notes as an indicator of out-of-hospital mortality in intensive care patients. PLoS ONE, 13(6), e0198687.
CrossRef
Google Scholar