Skip to main content

The Ehrenfests’ Use of Toy Models to Explore Irreversibility in Statistical Mechanics

  • Chapter
  • First Online:
The Legacy of Tatjana Afanassjewa

Part of the book series: Women in the History of Philosophy and Sciences ((WHPS,volume 7))

  • 124 Accesses

Abstract

This article highlights and discusses the Ehrenfests’ use of toy models to explore irreversibility in statistical mechanics. In particular, we explore their urn and P–Q models and highlight that, while the former was primarily used to provide a simple counter-example to Zermelo’s objection to Boltzmann’s statistical mechanical underpinning of the Second Law of Thermodynamics, the latter was intended to highlight the role and importance of the Stoßzahlansatz as a cause of the tendency of systems to exhibit entropy increase. We also explain the sense in which these models are toy models and why agents can use them, as the Ehrenfests’ did, to carry out this important work, despite the fact that they do not represent any real system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See, for example, Frigg and Nguyen (2016) and Frigg and Nguyen (2017).

  2. 2.

    Historically, however, intentionality conditions have usually been added to analyses of scientific representation only after they have been rejected for failing to account of the logical properties of scientific representations.

  3. 3.

    See Bartha (2013) for a comprehensive discussion of analogies and analogical reasoning.

  4. 4.

    For a discussion of other important functions performed by toy models see Luczak (2017).

  5. 5.

    The urn model was introduced in Ehrenfest and Ehrenfest (1907).

  6. 6.

    unvorstellbar.

  7. 7.

    in der Regel.

  8. 8.

    See Ehrenfest and Ehrenfest (1907, p. 2).

  9. 9.

    For the original description of the set-up, see Ehrenfest and Ehrenfest (1907, pp. 2–4).

  10. 10.

    hüpft.

  11. 11.

    See Ehrenfest and Ehrenfest (1907, p. 2–3).

  12. 12.

    Ehrenfest and Ehrenfest (1907, p. 2): Es ist immer wahrscheinlicher, daß die jeweils aufgerufene Kugel in der volleren, als daß sie in der leereren Urne angetroffen wird. Solange also die Urne A noch viel voller ist als die Urne B, wird sich bei den folgenden Ziehungen in der Regel die Urne A in B entleeren und nur ausnahmsweise eine Kugel aus B erhalten.

  13. 13.

    See Ehrenfest and Ehrenfest (1907, p. 4).

  14. 14.

    molekulare Unordnung.

  15. 15.

    Ehrenfest and Ehrenfest (1907, p. 4, footnote 1): Deshalb lassen wir hier die Frage durchaus unberührt, inwieweit der Nachweis des H-Theorems etwa als lückenlos angesehen werden kann; welchen Sinn man im speziellen der Hypothese einer dauernden “molekularen Unordnung” geben soll.

  16. 16.

    See e.g. Kac (1956).

  17. 17.

    See Luczak (2017).

  18. 18.

    The P–Q model was introduced in Ehrenfest and Ehrenfest (1909).

  19. 19.

    Zwischenstück.

  20. 20.

    Ehrenfest and Ehrenfest (1909, p. 19): ... welche Stellung der Stoßzahlansatz in den zuletzt erwähnten Maxwell-Boltzmannschen Untersuchungen einnimmt.

  21. 21.

    For a description of the model’s set-up, see Ehrenfest and Ehrenfest (1909, pp. 19–20).

  22. 22.

    Ehrenfest and Ehrenfest (1909, p. 19): ... auf jedes grösseres Gebiet sollen nahe gleichviel entfallen ...

  23. 23.

    Ehrenfest and Ehrenfest (1909, p. 20): Das Analogon zu dem mehrfach genannten Stoßzahlansatz besteht nun in der folgenden Behauptung: Von den P-Molekülen jeder einzelnen Bewegungsrichtung entfällt auf die Streifen S ein solcher Bruchteil, als dem Verhältnis der Gesamtfläche aller S zur totalen freien Fläche entspricht.

  24. 24.

    Ehrenfest and Ehrenfest (1909, p. 20): Wenn bei der Berechnung der Zahlen \(N_{12}\), \(N_{21}\), \(N_{23}\), \(N_{32}\) etc. für jedes Zeitelement \(\Delta t\) immer wieder der Stoßzahlansatz (7) zugrunde gelegt wird, so erhält man eine monotone Abnahme der Unterschiede der Zahlen \(f_1\), \(f_2\), \(f_3\), \(f_4\).

  25. 25.

    See Ehrenfest and Ehrenfest (1909, p. 19).

  26. 26.

    For the discussion by the Ehrefests, see Ehrenfest and Ehrenfest (1909, pp. 18–19); for reasons to treat the Stoßzahlansatz as true, see Luczak (2016).

  27. 27.

    See Boltzmann (1872).

  28. 28.

    The quantity we call H was originally denoted E in Boltzmann’s early work. See Boltzmann (1872).

  29. 29.

    See Brown et al. (2009) for more on Boltzmann’s H-theorem.

  30. 30.

    See Uffink (2007) and Brown et al. (2009) for more on these objections.

  31. 31.

    The term “Stoßzahlansatz” was coined by Paul and Tatiana Ehrenfest (1907). See Uffink (2007) and Brown et al. (2009) for more on the Stoßzahlansatz.

  32. 32.

    This is easiest to see if we consider the extreme disequilibrium state. Suppose that, at \(t = 0\), \(k_{-x,j,\Delta _t} = 1\), and that the Stoßzahlansatz holds. A time \(\Delta _t\) later, a fraction of these P-molecules have been scattered, half into the \(-y\)-direction, half into the y-direction. Suppose, now, we reverse the velocities, and ask what fraction of, say, the y-direction P-molecules will collide with a Q-molecule in time \(\Delta _t\). Answer: all of them! The P-molecules that are not travelling in the x-direction are all on collision courses that will turn them into x-travelling molecules.

  33. 33.

    For a description of modelling with representing models, see e.g. Frigg and Nguyen (2016, 2017).

References

  • Alexander, R., Dominik, H., & Stephan, H. (Forthcoming). Understanding (with) toy models. The British Journal for the Philosophy of Science.

    Google Scholar 

  • Boltzmann L. (1872). Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 66, 275–370.

    Google Scholar 

  • Brown, H. R., Myrvold, W., & Uffink, J. (2009). Boltzmann’s H-theorem, its discontents, and the birth of statistical mechanics. Studies in History and Philosophy of Science Part B, 40(2), 174–191. ISSN 1355-2198. https://doi.org/10.1016/j.shpsb.2009.03.003, http://www.sciencedirect.com/science/article/pii/S1355219809000124.

  • Ehrenfest, P., & Ehrenfest, T. (1907). Über zwei bekannte Einwande gegen das Boltzmannsche H-Theorem. Physikalische Zeitschrift, 8, 311–314.

    Google Scholar 

  • Ehrenfest, P., & Ehrenfest, T. (1909). Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. Leibzig: Teuber.

    Google Scholar 

  • Frigg, R., & Nguyen, J. (2016). Scientific representation. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition.

    Google Scholar 

  • Frigg, R., & Nguyen, J. (2017). Models and representation. In L. Magnani & T. Bertolotti (Eds.), Springer handbook of model-based science. Berlin and New York: Springer.

    Google Scholar 

  • James, N. (2019). It’s Not a Game: Accurate Representation with Toy Models. The British Journal for the Philosophy of Science.

    Google Scholar 

  • Kac, M. (1956). Some remarks on the use of probability in classical statistical mechanics. Bulletin of the Royal Belgium Academy of Science, 53, 356–361.

    Google Scholar 

  • Luczak, J. (2016). On how to approach the approach to equilibrium. Philosophy of Science, 83(3), 393–411.

    Article  Google Scholar 

  • Luczak, J. (2017). Talk about toy models. Studies in History and Philosophy of Modern Physics, 57, 1–7.

    Article  Google Scholar 

  • Paul B. (2013). Analogy and analogical reasoning. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Fall 2013 edition.

    Google Scholar 

  • Uffink, J. (2007). Compendium of the foundations of classical statistical physics. In J. Butterfield, & J. Earman (Eds.), Handbook for the philosophy of physics (pp. 924–1074). Amsterdam: Elsevier. http://philsci-archive.pitt.edu/2691/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Zuchowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luczak, J., Zuchowski, L. (2021). The Ehrenfests’ Use of Toy Models to Explore Irreversibility in Statistical Mechanics. In: Uffink, J., Valente, G., Werndl, C., Zuchowski, L. (eds) The Legacy of Tatjana Afanassjewa. Women in the History of Philosophy and Sciences, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-47971-8_6

Download citation

Publish with us

Policies and ethics