Alzetta, G., Arndt, D., Bangerth, W., Boddu, V., Brands, B., Davydov, D., Gassmoeller, R., Heister, T., Heltai, L., Kormann, K., Kronbichler, M., Maier, M., Pelteret, J.P., Turcksin, B., Wells, D.: The deal.II library, version 9.0. J. Numer. Math. 26(4), 173–184 (2018). https://doi.org/10.1515/jnma-2018-0054
Anderson, R., Barker, A., Bramwell, J., Cerveny, J., Dahm, J., Dobrev, V., Dudouit, Y., Fisher, A., Kolev, T., Stowell, M., Tomov, V.: MFEM: modular finite element methods (2019). mfem.org
Google Scholar
Antonietti, P.F., Sarti, M., Verani, M., Zikatanov, L.T.: A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems. J. Sci. Comput. 70(2), 608–630 (2017). https://doi.org/10.1007/s10915-016-0259-9
MathSciNet
MATH
Google Scholar
Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret, J.-P., Turcksin, B., Wells, D.: The deal.II finite element library: Design, features, and insights. Comput. Math. Appl. (2020). https://doi.org/10.1016/j.camwa.2020.02.022
Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Turek, S.: Hardware-based efficiency advances in the EXA-DUNE project. In: Bungartz, H.J., Neumann, P., Nagel, W.E. (eds.) Software for Exascale computing—SPPEXA 2013-2015, pp. 3–23. Springer, Cham (2016)
Google Scholar
Bastian, P., Müller, E.H., Müthing, S., Piatkowski, M.: Matrix-free multigrid block-preconditioners for higher order discontinuous Galerkin discretisations. J. Comput. Phys. 394, 417–439 (2019). https://doi.org/10.1016/j.jcp.2019.06.001
MathSciNet
Google Scholar
Bauer, S., Drzisga, D., Mohr, M., Rüde, U., Waluga, C., Wohlmuth, B.: A stencil scaling approach for accelerating matrix-free finite element implementations. SIAM J. Sci. Comput. 40(6), C748–C778 (2018)
MathSciNet
MATH
Google Scholar
Bergen, B., Hülsemann, F., Rüde, U.: Is 1.7 × 1010 unknowns the largest finite element system that can be solved today? In: Proceeding of ACM/IEEE Conference Supercomputing (SC’05), pp. 5:1–5:14 (2005). https://doi.org/10.1109/SC.2005.38
Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977). https://doi.org/10.1090/S0025-5718-1977-0431719-X
MathSciNet
MATH
Google Scholar
Brenner, S.C.: Korn’s inequalities for piecewise H
1 vector fields. Math. Comput. 73(247), 1067–1087 (2004)
MathSciNet
MATH
Google Scholar
Brown, J.: Efficient nonlinear solvers for nodal high-order finite elements in 3D. J. Sci. Comput. 45(1–3), 48–63 (2010)
MathSciNet
MATH
Google Scholar
Cantwell, C.D., Sherwin, S.J., Kirby, R.M., Kelly, P.H.J.: Form h to p efficiently: Selecting the optimal spectral/hp discretisation in three dimensions. Math. Model. Nat. Phenom. 6, 84–96 (2011)
MathSciNet
MATH
Google Scholar
Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: An open-source spectral/hp element framework. Comput. Phys. Comm. 192, 205–219 (2015). https://doi.org/10.1016/j.cpc.2015.02.008
MATH
Google Scholar
Charrier, D.E., Hazelwood, B., Tutlyaeva, E., Bader, M., Dumbser, M., Kudryavtsev, A., Moskovsky, A., Weinzierl, T.: Studies on the energy and deep memory behaviour of a cache-oblivious, task-based hyperbolic PDE solver. Int. J. High Perf. Comput. Appl. 33(5), 973–986 (2019). https://doi.org/10.1177/1094342019842645
Google Scholar
Clevenger, T.C., Heister, T., Kanschat, G., Kronbichler, M.: A flexible, parallel, adaptive geometric multigrid method for FEM. Technical report, arXiv:1904.03317 (2019)
Google Scholar
Davydov, D., Kronbichler, M.: Algorithms and data structures for matrix-free finite element operators with MPI-parallel sparse multi-vectors. ACM Trans. Parallel Comput. (2020). https://doi.org/10.1145/3399736
Davydov, D., Heister, T., Kronbichler, M., Steinmann, P.: Matrix-free locally adaptive finite element solution of density-functional theory with nonorthogonal orbitals and multigrid preconditioning. Phys. Status Solidi B: Basic Solid State Phys. 255(9), 1800069 (2018). https://doi.org/10.1002/pssb.201800069
Google Scholar
Davydov, D., Pelteret, J.P., Arndt, D., Kronbichler, M., Steinmann, P.: A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid. Int. J. Numer. Meth. Eng. (2020). https://doi.org/10.1002/nme.6336
Deville, M.O., Fischer, P.F., Mund, E.H.: High-order Methods for Incompressible Fluid Flow, vol. 9. Cambridge University, Cambridge (2002)
MATH
Google Scholar
Fehn, N., Heinz, J., Wall, W.A., Kronbichler, M.: High-order arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for the incompressible Navier-Stokes equations. Technical report, arXiv:2003.07166 (2020).
Google Scholar
Fehn, N., Wall, W.A., Kronbichler, M.: On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations. J. Comput. Phys. 351, 392–421 (2017). https://doi.org/10.1016/j.jcp.2017.09.031
MathSciNet
MATH
Google Scholar
Fehn, N., Wall, W.A., Kronbichler, M.: Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows. Int. J. Numer. Meth. Fluids 88(1), 32–54 (2018). https://doi.org/10.1002/fld.4511
MathSciNet
MATH
Google Scholar
Fehn, N., Wall, W.A., Kronbichler, M.: Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows. J. Comput. Phys. 372, 667–693 (2018). https://doi.org/10.1016/j.jcp.2018.06.037
MathSciNet
MATH
Google Scholar
Fehn, N., Wall, W.A., Kronbichler, M.: A matrix-free high-order discontinuous Galerkin compressible Navier–Stokes solver: a performance comparison of compressible and incompressible formulations for turbulent incompressible flows. Int. J. Numer. Meth. Fluids 89(3), 71–102 (2019). https://doi.org/10.1002/fld.4683
MathSciNet
Google Scholar
Fehn, N., Wall, W.A., Kronbichler, M.: Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering: a comprehensive LES study of the FDA benchmark nozzle model. Int. J. Numer. Meth. Biomed. Eng. 35(12), e3228 (2019). https://doi.org/10.1002/cnm.3228
Google Scholar
Fehn, N., Kronbichler, M., Lehrenfeld, C., Lube, G., Schroeder, P.W.: High-order DG solvers for under-resolved turbulent incompressible flows: a comparison of L
2 and H(div) methods. Int. J. Numer. Meth. Fluids 91(11), 533–556 (2019). https://doi.org/10.1002/fld.4763
Google Scholar
Fehn, N., Munch, P., Wall, W.A., Kronbichler, M.: Hybrid multigrid methods for high-order discontinuous Galerkin discretizations. J. Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.2020.109538
Fischer, P., Kerkemeier, S., Peplinski, A., Shaver, D., Tomboulides, A., Min, M., Obabko, A., Merzari, E.: Nek5000 Web page (2019). https://nek5000.mcs.anl.gov
Fischer, P., Min, M., Rathnayake, T., Dutta, S., Kolev, T., Dobrev, V., Camier, J.S., Kronbichler, M., Warburton, T., Świrydowicz, K., Brown, J.: Scalability of high-performance PDE solvers. Int. J. High Perf. Comput. Appl. (2020). https://doi.org/10.1177/1094342020915762
Gholami, A., Malhotra, D., Sundar, H., Biros, G.: FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube. SIAM J. Sci. Comput. 38(3), C280–C306 (2016). https://doi.org/10.1137/15M1010798
MATH
Google Scholar
Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Towards textbook efficiency for parallel multigrid. Numer. Math.-Theory Me. Appl. 8(1), 22–46 (2015)
MathSciNet
MATH
Google Scholar
Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance study for Stokes solvers at the extreme scale. J. Comput. Sci. 17, 509–521 (2016). https://doi.org/10.1016/j.jocs.2016.06.006. http://www.sciencedirect.com/science/article/pii/S1877750316301077. Recent Advances in Parallel Techniques for Scientific Computing
Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Boca Raton (2011)
Google Scholar
Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002)
MathSciNet
MATH
Google Scholar
Ibeid, H., Olson, L., Gropp, W.: FFT, FMM, and multigrid on the road to exascale: performance challenges and opportunities. J. Parallel Distrib. Comput. 136, 63–74 (2020). https://doi.org/10.1016/j.jpdc.2019.09.014
Google Scholar
Janssen, B., Kanschat, G.: Adaptive multilevel methods with local smoothing for H
1- and H
curl-conforming high order finite element methods. SIAM J. Sci. Comput. 33(4), 2095–2114 (2011). https://doi.org/10.1137/090778523
MathSciNet
MATH
Google Scholar
Kanschat, G.: Multi-level methods for discontinuous Galerkin FEM on locally refined meshes. Comput. Struct. 82(28), 2437–2445 (2004). https://doi.org/10.1016/j.compstruc.2004.04.015
Google Scholar
Kanschat, G.: Robust smoothers for high order discontinuous Galerkin discretizations of advection-diffusion problems. J. Comput. Appl. Math. 218, 53–60 (2008). https://doi.org/10.1016/j.cam.2007.04.032
MathSciNet
MATH
Google Scholar
Kanschat, G., Mao, Y.: Multigrid methods for H
div-conforming discontinuous Galerkin methods for the Stokes equations. J. Numer. Math. 23(1), 51–66 (2015). https://doi.org/10.1515/jnma-2015-0005
MathSciNet
MATH
Google Scholar
Kempf, D., Hess, R., Müthing, S., Bastian, P.: Automatic code generation for high-performance discontinuous Galerkin methods on modern architectures. Technical report, arXiv:1812.08075 (2018)
Google Scholar
Knepley, M.G., Brown, J., Rupp, K., Smith, B.F.: Achieving high performance with unified residual evaluation. Technical report, arXiv:1309.1204 (2013)
Google Scholar
Kormann, K.: A time-space adaptive method for the Schrödinger equation. Commun. Comput. Phys. 20(1), 60–85 (2016). https://doi.org/10.4208/cicp.101214.021015a
MathSciNet
MATH
Google Scholar
Kormann, K., Kronbichler, M.: Parallel finite element operator application: graph partitioning and coloring. In: Proceeding of 7th IEEE International Conference eScience, pp. 332–339 (2011). https://10.1109/eScience.2011.53
Google Scholar
Kormann, K., Reuter, K., Rampp, M.: A massively parallel semi-Lagrangian solver for the six-dimensional Vlasov–Poisson equation. Int. J. High Perform. Comput. Appl. 33(5), 924–947 (2019). https://doi.org/10.1177/1094342019834644
Google Scholar
Krank, B., Fehn, N., Wall, W.A., Kronbichler, M.: A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow. J. Comput. Phys. 348, 634–659 (2017). https://doi.org/10.1016/j.jcp.2017.07.039
MathSciNet
MATH
Google Scholar
Krank, B., Kronbichler, M., Wall, W.A.: Direct numerical simulation of flow over periodic hills up to Reh = 10, 595. Flow Turbulence Combust. 101, 521–551 (2018). https://doi.org/10.1007/s10494-018-9941-3
Google Scholar
Krank, B., Kronbichler, M., Wall, W.A.: A multiscale approach to hybrid RANS/LES wall modeling within a high-order discontinuous Galerkin scheme using function enrichment. Int. J. Numer. Meth. Fluids 90, 81–113 (2019). https://doi.org/10.1002/fld.4712
MathSciNet
Google Scholar
Kronbichler, M., Allalen, M.: Efficient high-order discontinuous Galerkin finite elements with matrix-free implementations. In: Bungartz, H.J., Kranzlmüller, D., Weinberg, V., Weismüller, J., Wohlgemuth, V. (eds.) Advances and New Trends in Environmental Informatics, pp. 89–110. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99654-7_7
Google Scholar
Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application. Comput. Fluids 63, 135–147 (2012). https://doi.org/10.1016/j.compfluid.2012.04.012
MathSciNet
MATH
Google Scholar
Kronbichler, M., Kormann, K.: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Trans. Math. Softw. 45(3), 29:1–29:40 (2019). https://doi.org/10.1145/3325864
Kronbichler, M., Ljungkvist, K.: Multigrid for matrix-free high-order finite element computations on graphics processors. ACM Trans. Parallel Comput. 6(1), 2:1–2:32 (2019). https://doi.org/10.1145/3322813
Kronbichler, M., Wall, W.A.: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SIAM J. Sci. Comput. 40(5), A3423–A3448 (2018). https://doi.org/10.1137/16M110455X
MathSciNet
MATH
Google Scholar
Kronbichler, M., Schoeder, S., Müller, C., Wall, W.A.: Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer. Meth. Eng. 106(9), 712–739 (2016). https://doi.org/10.1002/nme.5137
MathSciNet
MATH
Google Scholar
Kronbichler, M., Kormann, K., Pasichnyk, I., Allalen, M.: Fast matrix-free discontinuous Galerkin kernels on modern computer architectures. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D.E. (eds.) ISC High Performance 2017, LNCS 10266, pp. 237–255 (2017). https://doi.org/10.1007/978-3-319-58667-013
Google Scholar
Kronbichler, M., Diagne, A., Holmgren, H.: A fast massively parallel two-phase flow solver for microfluidic chip simulation. Int. J. High Perf. Comput. Appl. 32(2), 266–287 (2018). https://doi.org/10.1177/1094342016671790
Google Scholar
Kronbichler, M., Kormann, K., Fehn, N., Munch, P., Witte, J.: A Hermite-like basis for faster matrix-free evaluation of interior penalty discontinuous Galerkin operators. Technical report, arXiv:1907.08492 (2019)
Google Scholar
Ljungkvist, K.: Matrix-free finite-element computations on graphics processors with adaptively refined unstructured meshes. In: Proceedings of the 25th High Performance Computing Symposium, HPC ’17, pp. 1:1–1:12. Society for Computer Simulation International, San Diego (2017). http://dl.acm.org/citation.cfm?id=3108096.3108097
Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6, 185–199 (1964). https://doi.org/10.1007/BF01386067
MathSciNet
MATH
Google Scholar
Munch, P., Kormann, K., Kronbichler, M.: hyper.deal: An efficient, matrix-free finite-element library for high-dimensional partial differential equations. Technical report, arXiv:2002.08110 (2020)
Google Scholar
Müthing, S., Piatkowski, M., Bastian, P.: High-performance implementation of matrix-free high-order discontinuous Galerkin methods. Technical report, arXiv:1711.10885 (2017)
Google Scholar
Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980)
MathSciNet
MATH
Google Scholar
Raffenetti, K., Amer, A., Oden, L., Archer, C., Bland, W., Fujita, H., Guo, Y., Janjusic, T., Durnov, D., Blocksome, M., Si, M., Seo, S., Langer, A., Zheng, G., Takagi, M., Coffman, P., Jose, J., Sur, S., Sannikov, A., Oblomov, S., Chuvelev, M., Hatanaka, M., Zhao, X., Fischer, P., Rathnayake, T., Otten, M., Min, M., Balaji, P.: Why is MPI so slow?: Analyzing the fundamental limits in implementing MPI-3.1. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17, pp. 62:1–62:12. ACM, New York (2017). https://doi.org/10.1145/3126908.3126963
Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Soft. 43(3), 24:1–24:27 (2017). https://doi.org/10.1145/2998441
Schmidt, S.: Fast, tensor-based solution of problems involving incompressibility, Bachelor thesis. Heidelberg University, Heidelberg (2019)
Google Scholar
Schoeder, S., Kormann, K., Wall, W.A., Kronbichler, M.: Efficient explicit time stepping of high order discontinuous Galerkin schemes for waves. SIAM J. Sci. Comput. 40(6), C803–C826 (2018). https://doi.org/10.1137/18M1185399
MathSciNet
MATH
Google Scholar
Schoeder, S., Kronbichler, M., Wall, W.: Arbitrary high-order explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. J. Sci. Comput. 76, 969–1006 (2018). https://doi.org/10.1007/s10915-018-0649-2
MathSciNet
MATH
Google Scholar
Schoeder, S., Sticko, S., Kreiss, G., Kronbichler, M.: High-order cut discontinuous Galerkin methods with local time stepping for acoustics. Int. J. Numer. Meth. Eng. (2020). https://doi.org/10.1002/nme.6343
Schoeder, S., Wall, W.A., Kronbichler, M.: ExWave: A high performance discontinuous Galerkin solver for the acoustic wave equation. Soft. X 9, 49–54 (2019). https://doi.org/10.1016/j.softx.2019.01.001
Google Scholar
Solomonoff, A.: A fast algorithm for spectral differentiation. J. Comput. Phys. 98(1), 174–177 (1992). https://doi.org/10.1016/0021-9991(92)90182-X
MathSciNet
MATH
Google Scholar
Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel geometric-algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, p. 43. IEEE Computer Society, Silver Spring (2012)
Google Scholar
Świrydowicz, K., Chalmers, N., Karakus, A., Warburton, T.: Acceleration of tensor-product operations for high-order finite element methods. Int. J. High Perf. Comput. Appl. 33(4), 735–757 (2019). https://doi.org/10.1177/1094342018816368
Google Scholar
Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100 (2000)
MathSciNet
MATH
Google Scholar
Van Loan, C.F., Pitsianis, N.: Approximation with Kronecker products. In: Linear Algebra for Large Scale and Real-time Applications, pp. 293–314. Springer, Berlin (1993)
Google Scholar
Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2009)
MATH
Google Scholar
Wichmann, K.R., Kronbichler, M., Löhner, R., Wall, W.A.: Practical applicability of optimizations and performance models to complex stencil-based loop kernels in CFD. Int. J. High Perf. Comput. Appl. 33(4), 602–618 (2019). https://doi.org/10.1177/1094342018774126
Google Scholar
Witte, J., Arndt, D., Kanschat, G.: Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods. Technical report, arXiv:1910.11239 (2019)
Google Scholar