Skip to main content

Definition and Theory of Transmission Network Planning

  • Chapter
  • First Online:
Transmission Network Investment in Liberalized Power Markets

Part of the book series: Lecture Notes in Energy ((LNEN,volume 79))

Abstract

With increasing interest in building large-scale solar parks and wind farms and the implementation of new environmental regulations that will result in retirement of some conventional power plants, the need for building new transmission is inevitable even in regions with low demand growth. Planning of such network expansion is therefore increasingly important, particularly because the cost of new transmission is typically higher in real terms than historical costs. This chapter contains five sections. In the first section, the impact of different factors affecting transmission expansion planning (TEP) is investigated, and different models for transmission investment financing and coordination are reviewed. The second section covers a literature review on TEP studies. Different TEP optimization formulations and available decomposition techniques are explained in the third section. Then, a general framework for solving large-scale TEP studies is reviewed, and computational challenges/potential solutions are investigated from different perspectives in section four. The chapter concludes with a section on numerical analysis, in which large-scale network models are used to demonstrate capabilities of optimization-based TEP studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(N_b\) :

Set of buses; index k, n

\(N_g\) :

Set of all generators; index g

\(N_{wg}\) :

Set of all wind generators; index g

\(N_l\) :

Set of all lines (existing and candidate); index l, m

\(N_o\) :

Set of all existing lines; index l, m

\(N_n\) :

Set of all candidate lines; index l, m

\(L_k\) :

Set of lines connected to bus k

\(G_k\) :

Set of all generators connected to bus k

\(N_s^{\omega }\) :

Set of system operation states under scenario \(\omega \); index c (\(c=1\) represents the normal operation condition)

\(\upsilon \) :

Superscript/index for iteration number

\(\Omega \) :

Set of scenarios; index \({\omega }\)

\(\mathscr {I}\) :

Set of classes

\(\mathscr {I}_i\) :

Set of scenarios in class i

\(\mathscr {S}^i\) :

Set of clusters for class i

\(\mathscr {S}^i_j\) :

Set of scenarios in cluster j for class i

\(\mathscr {B}\) :

Set of bundles

\(\mathscr {B}_i\) :

Set of scenarios in bundle i

\(|\; \; |\) :

Size of a set

\(q_i\) :

Per MWh load shedding penalty at bus i

\(\gamma _g\) :

Per MWh wind curtailment penalty for wind farm g

\(Co_g\) :

Per MWh generation cost for generator g

\(\zeta _l\) :

Annual cost of line l construction

\(d_k\) :

Demand at bus k

B :

Diagonal matrix of line suseptance

\(P_g^{\max }\)/\(P_g^{\min }\):

Maximum/Minimum capacity of generator g

\(f_l^{\max }\)/\(f_l^{\min }\):

Maximum/Minimum capacity of line l

\(C^{\omega }\) :

Matrix of contingencies (operation states) that specifies the status of lines under different contingencies (1 for in service and 0 for out of service lines) for scenario \(\omega \); index c

\(\vartheta \) :

Variable freezing parameter

\(\rho _l\) :

Penalty factor for line l in PH algorithm

\(\kappa \) :

Size of each bundle

d :

Size of a TEP optimization problem

SC :

Number of structural constraints for a TEP problem

CV :

Number of continues variables for a TEP problem

BV :

Number of binary variables for a TEP problem

\(\tilde{\xi }\) :

Random variables (load and wind)

\(r_{k,c}\) :

Load curtailment at bus k under operating state c

\(CW_{g}\) :

Wind curtailment for wind farm g

\(p_{g}\) :

Output power of generator g

\(f_{l,c}\) :

Power flow in line l under operation state c

\(\theta _{i,c}\) :

Voltage angle at bus i under operating state c \(\Delta \theta _{l,c}\) is voltage angle difference across line l under operating state c. \(\Delta \theta _{l,c}\)= \(\theta _{k,c}\)-\(\theta _{n,c}\) for line l from bus k to bus n

\(x_l\) :

Binary decision variable for line l

\(\textit{\textbf{x}}^\omega \) :

Binary decision variables vector for scenario \(\omega \)

\(\textit{\textbf{x}}^{\mathscr {B}_i}\) :

Binary decision variables vector for bundle \(\mathscr {B}_i\)

\(\textit{\textbf{W}}_{\mathscr {B}_i}\) :

Multiplier vector for bundle \(\mathscr {B}_i\) in PH algorithm

\(\varvec{\mathscr {Z}}\) :

Binary variables matrix for clustering

\(\varvec{\mathscr {H}}\) :

Binary variables matrix for bundling

References

  • A. Abiri-Jahromi, F. Bouffard, On the loadability sets of power systems-part I: characterization. IEEE Trans. Power Syst. 32(1), 137–145 (2017)

    Google Scholar 

  • A. Abiri-Jahromi, F. Bouffard, On the loadability sets of power systems-part II: minimal representations. IEEE Trans. Power Syst. 32(1), 146–156 (2017)

    Google Scholar 

  • T. Akbari, A. Rahimikian, A. Kazemi, A multi-stage stochastic transmission expansion planning method. Energy Convers. Manage. 52(8–9), 2844–2853 (2011)

    Google Scholar 

  • N. Alguacil, A.L. Motto, A.J. Conejo, Transmission expansion planning: a mixed-integer LP approach. IEEE Trans. Power Syst. 18(3), 1070–1077 (2003)

    Google Scholar 

  • J. Alvarez Lopez, K. Ponnambalam, V.H. Quintana, Generation and transmission expansion under risk using stochastic programming. IEEE Trans. Power Syst. 22(3), 1369–1378 (2007)

    Google Scholar 

  • A.J. Ardakani, F. Bouffard, Identification of umbrella constraints in DC-based security-constrained optimal power flow. IEEE Trans. Power Syst. 28(4), 3924–3934 (2013)

    Google Scholar 

  • M. Armstrong, D.E.M. Sappington, Recent Developments in the Theory of Regulation, volume 3 of Handbook of Industrial Organization, Chap. 27 (Elsevier, Amsterdam, 2007), pp. 1557–1700

    Google Scholar 

  • L. Bahiense, G.C. Oliveira, M. Pereira, S. Granville, A mixed integer disjunctive model for transmission network expansion. IEEE Trans. Power Syst. 16(3), 560–565 (2001)

    Google Scholar 

  • R. Baldick, K. Dixit, T.J. Overbye, Empirical analysis of the variation of distribution factors with loading, in Power Engineering Society General Meeting, 2005, vol. 1 (IEEE, New York, June 2005), pp. 221–229

    Google Scholar 

  • J.F. Benders, Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 3, 238–252 (1962)

    Google Scholar 

  • D. Bertsimas, D.B. Brown, C. Caramanis, Theory and applications of robust optimization. SIAM Review 53(3), 464–501 (2011)

    Google Scholar 

  • S. Binato, M.V.F. Pereira, S. Granville, A new Benders decomposition approach to solve power transmission network design problems. IEEE Trans. Power Syst. 16(2), 235–240 (2001)

    Google Scholar 

  • J.R. Birge, F.V. Louveaux, A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34, 384–392 (1988)

    Google Scholar 

  • G. Blackmon, Incentive Regulation and the Regulation of Incentives, 1st edn. (Springer, New York, NY, 1994)

    Google Scholar 

  • M.O. Buygi, G. Balzer, H.M. Shanechi, M. Shahidehpour, Market-based transmission expansion planning. IEEE Trans. Power Syst. 19(4), 2060–2067 (2004)

    Google Scholar 

  • M. Carrion, J.M. Arroyo, N. Alguacil, Vulnerability-constrained transmission expansion planning: A stochastic programming approach. IEEE Trans. Power Syst. 22(4), 1436–1445 (2007)

    Google Scholar 

  • E.B. Cedeño, S. Arora, Performance comparison of transmission network expansion planning under deterministic and uncertain conditions. Int. J. Electr. Power Energy Syst. 33(7), 1288–1295 (2011)

    Google Scholar 

  • G. Chen, Z.Y. Dong, D.J. Hill, Transmission network expansion planning with wind energy integration: a stochastic programming model, in Power and Energy Society General Meeting, 2012 (IEEE, New York, July 2012), pp. 1–10

    Google Scholar 

  • A.J. Conejo, E. Castillo, R. Minguez, R. Garcia-Bertrand, Decomposition Techniques in Mathematical Programming: Engineering and Science Applications (Springer, Berlin, 2006)

    Google Scholar 

  • T.G. Crainic, M. Hewitt, W. Rei, Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design. Comput. Oper. Res. 43, 90–99 (2014)

    Google Scholar 

  • Electric Reliability Council of Texas. ERCOT planning guide, section 4: Transmission planning criteria (2014)

    Google Scholar 

  • ERCOT System Planning. 2014 Long-Term System Assessment for the ERCOT Region (2014)

    Google Scholar 

  • ERCOT System Planning. 2016 Long-Term System Assessment for the ERCOT Region (2016)

    Google Scholar 

  • L.F. Escudero, M.A. Garín, M. Merino, G. Pérez, An algorithmic framework for solving large-scale multistage stochastic mixed 0–1 problems with nonsymmetric scenario trees. Comput. Oper. Res. 39(5), 1133–1144 (2012)

    Google Scholar 

  • FERC. Federal energy regulatory commission (2019)

    Google Scholar 

  • D. Gade, G. Hackebeil, S.M. Ryan, J.-P. Watson, R.J.-B. Wets, D.L. Woodruff, Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs. Math. Program. 157(1), 47–67 (2016)

    Google Scholar 

  • GAMS. Scenred: Scenario reduction algorithms (2002)

    Google Scholar 

  • R. Garcia-Bertrand, R. Minguez, Dynamic robust transmission network expansion planning. IEEE Trans. Power Syst. 99, 1 (2016)

    Google Scholar 

  • L.L. Garver, Transmission network estimation using linear programming. IEEE Trans. Power Apparatus Syst. PAS–89(7), 1688–1697 (1970)

    Google Scholar 

  • S. Granville, M. Pereira, G. Dantzig, B. Ivi-Itzhak, M. Avriel, A. Monticelli, L. Pinto, Mathematical Decomposition Techniques for Expansion Planning Vol 2: Analysis of the Linearised Power Flow Model Using the Bender Decomposition Technique. EPRI Technical Report EL-5299 (1988)

    Google Scholar 

  • Gurobi Optimization, Inc. Gurobi optimizer reference manual (2014)

    Google Scholar 

  • J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd edn. (Elsevier, Amsterdam, 2011)

    Google Scholar 

  • K.W. Hedman, R.P. O’Neill, E.B. Fisher, S.S. Oren, Optimal transmission switching with sensitivity analysis and extensions. IEEE Trans. Power Syst. 23(3), 1469–1479 (2008)

    Google Scholar 

  • M.R. Hesamzadeh, J. Rosellon, S.A. Gabriel, I. Vogelsang, A simple regulatory incentive mechanism applied to electricity transmission pricing and investment. Energy Econ. 75, 423–439 (2018)

    Google Scholar 

  • W. Hogan, J. Rosellon, I. Vogelsang, Toward a combined merchant-regulatory mechanism for electricity transmission expansion. J. Regul. Econ. 38(2), 113–143 (2010)

    Google Scholar 

  • R.A. Jabr, Robust transmission network expansion planning with uncertain renewable generation and loads. IEEE Trans. Power Syst. 28(4), 4558–4567 (2013)

    Google Scholar 

  • R. Jiang, J. Wang, M. Zhang, Y. Guan, Two-stage minimax regret robust unit commitment. IEEE Trans. Power Syst. 28(3), 2271–2282 (2013)

    Google Scholar 

  • S. Jin, S.M. Ryan, A tri-level model of centralized transmission and decentralized generation expansion planning for an electricity market: part I. IEEE Trans. Power Syst. 29(1), 132–141 (2014)

    Google Scholar 

  • P. Joskow, Incentive regulation in theory and practice: electricity transmission and distribution networks. Technical Report (2006)

    Google Scholar 

  • P. Kall, S.W. Woodruff, Stochastic Programming (Wiley, Chichester, 1994)

    Google Scholar 

  • A. Khodaei, M. Shahidehpour, S. Kamalinia, Transmission switching in expansion planning. IEEE Trans. Power Syst. 25(3), 1722–1733 (2010)

    Google Scholar 

  • G. Latorre-Bayona, I.J. Perez-Arriaga, Chopin, a heuristic model for long term transmission expansion planning. IEEE Trans. Power Syst. 9(4), 1886–1894 (1994)

    Google Scholar 

  • G. Latorre, R.D. Cruz, J.M. Areiza, A. Villegas, Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst. 18(2), 938–946 (2003)

    Google Scholar 

  • A.M. Leite da Silva, L.S. Rezende, L. A F Manso, G.J. Anders, Transmission expansion planning: a discussion on reliability and \(N-1\) security criteria, in 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp. 244–251 (June 2010)

    Google Scholar 

  • J. Lofberg, Yalmip : A toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

    Google Scholar 

  • R. Madani, J. Lavaei, R. Baldick, Constraint screening for security analysis of power networks. IEEE Trans. Power Syst. 32(3), 1828–1838 (2017)

    Google Scholar 

  • M. Majidi, S. Afsharnia, M.S. Ghazizadeh, A. Pazuki, A new method for optimal location of facts devices in deregulated electricity market, in Electric Power Conference, 2008. EPEC 2008. IEEE Canada, pp. 1–6 (Oct 2008)

    Google Scholar 

  • M. Majidi, M.S. Ghazizadeh, S. Afsharnia, A novel approach to allocate transmission embedded cost based on mw-mile method under deregulated environment, in Electric Power Conference, 2008. EPEC 2008. IEEE Canada, pp. 1–6 (Oct 2008)

    Google Scholar 

  • M. Majidi-Qadikolai, Transmission Expansion Planning: Computational challenges toward real-size networks. PhD Dissertation, The University of Texas at Austin (August 2017)

    Google Scholar 

  • M. Majidi-Qadikolai, R. Baldick, Reducing the candidate line list for practical integration of switching into power system operation, in 22nd International Symposium on Mathematical Programming, (ISMP 2015), Pittsburgh, USA, (2015)

    Google Scholar 

  • M. Majidi-Qadikolai, R. Baldick, Reducing the number of candidate lines for high level transmission capacity expansion planning under uncertainties, in North American Power Symposium (NAPS), 2015, pp. 1–6 (Oct 2015)

    Google Scholar 

  • M. Majidi-Qadikolai, C. Urena, R. Baldick, Optimization-based approaches for practical transmission expansion planning studies: Ercot case studies, in IEEE PES General Meeting 2018 (August 2018)

    Google Scholar 

  • M. Majidi-Qadikolai, R. Baldick, Stochastic transmission capacity expansion planning with special scenario selection for integrating n-1 contingency analysis. IEEE Trans. Power Syst. 31(6), 4901–4912 (2016)

    Google Scholar 

  • M. Majidi-Qadikolai, R. Baldick, Integration of N-1 contingency analysis with systematic transmission capacity expansion planning: Ercot case study. IEEE Trans. Power Syst. 31(3), 2234–2245 (2016)

    Google Scholar 

  • M. Majidi-Qadikolai, R. Baldick, A generalized decomposition framework for large-scale transmission expansion planning. IEEE Trans. Power Syst. 33(2), 1635–1649 (2018)

    Google Scholar 

  • Market & Infrastructure Development, CAISO. California ISO 2016-2017 Regional Transmission Planning Process (2016)

    Google Scholar 

  • Midcontinent ISO. MTEP16 MISO Transmission Expansion Plan (2016)

    Google Scholar 

  • R. Minguez, R. Garcia-Bertrand, Robust transmission network expansion planning in energy systems: improving computational performance. Eur. J. Oper. Res. 248(1), 21–32 (2016)

    Google Scholar 

  • A. Monticelli, M.V.F. Pereira, S. Granville, Security-constrained optimal power flow with post-contingency corrective rescheduling. IEEE Trans. Power Syst. 2(1), 175–180 (1987)

    Google Scholar 

  • A. Monticelli, A. Santos, M.V.F. Pereira, S.H. Cunha, B.J. Parker, J.C.G. Praca, Interactive transmission network planning using a least-effort criterion. IEEE Power Eng. Rev. PER–2(10), 46–47 (1982)

    Google Scholar 

  • R. Moreno, D. Pudjianto, G. Strbac, Transmission network investment with probabilistic security and corrective control. IEEE Trans. Power Syst. 28(4), 3935–3944 (2013)

    Google Scholar 

  • F.D. Munoz, J.-P. Watson, B.F. Hobbs, New bounding and decomposition approaches for MILP investment problems: multi-area transmission and generation planning under policy constraints, in Sandia National Laboratories (SNL-NM), (SAND2014-4398J) (2014)

    Google Scholar 

  • F.D. Munoz, B.F. Hobbs, J.L. Ho, S. Kasina, An engineering-economic approach to transmission planning under market and regulatory uncertainties: WECC case study. IEEE Trans. Power Syst. 29(1), 307–317 (2014)

    Google Scholar 

  • F.D. Munoz, E.E. Sauma, B.F. Hobbs, Approximations in power transmission planning: implications for the cost and performance of renewable portfolio standards. J. Regul. Econ. 43(3), 305–338 (2013)

    Google Scholar 

  • F. Munoz, J.-P. Watson, A scalable solution framework for stochastic transmission and generation planning problems. CMS 12(4), 491–518 (2015)

    Google Scholar 

  • F.D. Munoz, J.-P. Watson, B.F. Hobbs, Optimizing your options: extracting the full economic value of transmission when planning under uncertainty. Electr. J. 28(5), 26–38 (2015)

    Google Scholar 

  • NERC. Definition of adequate level of reliability (2007)

    Google Scholar 

  • NERC. North american electric reliability corporation (2019)

    Google Scholar 

  • NERC. Transmission system adequacy and security (2005)

    Google Scholar 

  • R.P. O’Neill, E.A. Krall, K.W. Hedman, S.S. Oren, A model and approach for optimal power systems planning and investment. Math. Program. (2011)

    Google Scholar 

  • T.J. Overbye, X. Cheng, Y. Sun, A comparison of the AC and DC power flow models for LMP calculations, in Proceedings of the 37th Annual Hawaii International Conference on System Sciences, p. 9 (Jan 2004)

    Google Scholar 

  • H. Park, R. Baldick, Transmission planning under uncertainties of wind and load: sequential approximation approach. IEEE Trans. Power Syst. 28(3), 2395–2402 (2013)

    Google Scholar 

  • M.V.F. Pereira, L.M.V.G. Pinto, Application of sensitivity analysis of load supplying capability to interactive transmission expansion planning. IEEE Trans. Power Apparatus Syst. PAS–104(2), 381–389 (1985)

    Google Scholar 

  • Potomac Economics. 2013 active constraint list. Personal Correspondence (2014)

    Google Scholar 

  • R. Pringles, F. Olsina, F. Garcés, Real option valuation of power transmission investments by stochastic simulation. Energy Econ. 47, 215–226 (2015)

    Google Scholar 

  • F. Regairz et al., Market price signals and regulatory frameworks for coordination of transmission investments. CIGRE (2017)

    Google Scholar 

  • R.T. Rockafellar, R.J-B. Wets, Scenario and policy aggregation in optimization under uncertainty. Math. Oper. Res. pp. 119–147 (1991)

    Google Scholar 

  • C. Roger Glassey, Nested decomposition and multi-stage linear programs. Manage. Sci. 20(3), 282–292 (1973)

    Google Scholar 

  • R. Romero, A. Monticelli, A hierarchical decomposition approach for transmission network expansion planning. IEEE Trans. Power Syst. 9(1), 373–380 (1994)

    Google Scholar 

  • R. Romero, A. Monticelli, A zero-one implicit enumeration method for optimizing investments in transmission expansion planning. IEEE Trans. Power Syst. 9(3), 1385–1391 (1994)

    Google Scholar 

  • J. Rosellon, H. Weigt, A combined merchant-regulatory mechanism for electricity transmission expansion in europe. Energy J. 32(1), 119–148 (2011)

    Google Scholar 

  • A.M. Rudkevich, A nodal capacity market for co-optimization of generation and transmission expansion, in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1080–1088 (October 2012)

    Google Scholar 

  • P.A. Ruiz, A. Rudkevich, M.C. Caramanis, E. Goldis, E. Ntakou, C.R. Philbrick, Reduced MIP formulation for transmission topology control, in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1073–1079 (October 2012a)

    Google Scholar 

  • C. Ruiz, A.J. Conejo, Robust transmission expansion planning. Eur. J. Oper. Res. 242(2), 390–401 (2015)

    Google Scholar 

  • P.A. Ruiz, J. Contreras, An effective transmission network expansion cost allocation based on game theory. IEEE Trans. Power Syst. 22(1), 136–144 (2007)

    Google Scholar 

  • P.A. Ruiz, J.M. Foster, A. Rudkevich, M.C. Caramanis, Tractable transmission topology control using sensitivity analysis. IEEE Trans. Power Syst. 27(3), 1550–1559 (2012b)

    Google Scholar 

  • S.M. Ryan, R.J.B. Wets, D.L. Woodruff, C. Silva-Monroy, J.P. Watson, Toward scalable, parallel progressive hedging for stochastic unit commitment, in 2013 IEEE Power Energy Society General Meeting, pp. 1–5 (July 2013)

    Google Scholar 

  • D.E.M. Sappington, D.S. Sibley, Regulating without cost information: the incremental surplus subsidy scheme. Int. Econ. Rev. 29(2), 297–306 (1988)

    Google Scholar 

  • Y. Tohidi, M.R. Hesamzadeh, Multi-regional transmission planning as a non-cooperative decision-making. IEEE Trans. Power Syst. 29(6), 2662–2671 (2014)

    Google Scholar 

  • Y. Tohidi, M.R. Hesamzadeh, F. Regairaz, Sequential coordination of transmission expansion planning with strategic generation investments. IEEE Trans. Power Syst. 32(4), 2521–2534 (2017a)

    Google Scholar 

  • Y. Tohidi, L. Olmos, M. Rivier, M.R. Hesamzadeh, Coordination of generation and transmission development through generation transmission charges—a game theoretical approach. IEEE Trans. Power Syst. 32(2), 1103–1114 (2017b)

    Google Scholar 

  • D. Van Hertem, J. Verboomen, K. Purchala, R. Belmans, W.L. Kling, Usefulness of DC power flow for active power flow analysis with flow controlling devices, in The 8th IEE International Conference on AC and DC Power Transmission, 2006. ACDC 2006 (IET, 2006), pp. 58–62

    Google Scholar 

  • R.V. Villanasa, Transmission network planning using linear and mixed linear integer programming. Ph.D. thesis, Ressenlaer Polytechnic Institute (1984)

    Google Scholar 

  • R. Villasana, L.L. Garver, S.J. Salon, Transmission network planning using linear programming. IEEE Trans. Power Apparatus Syst. PAS–104(2), 349–356 (1985)

    Google Scholar 

  • I. Vogelsang, Price regulation for independent transmission companies. J. Regul. Econ. 20(2), 141–165 (2001)

    Google Scholar 

  • I. Vogelsang, J. Finsinger, A regulatory adjustment process for optimal pricing by multiproduct monopoly firms. Bell J. Econ. 10(1), 157–171 (1979)

    Google Scholar 

  • J.-P. Watson, D.L. Woodruff, Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems. CMS 8(4), 355–370 (2011)

    Google Scholar 

  • R.J.B. Wets, The aggregation principle in scenario analysis and stochastic optimization, in Algorithms and Model Formulations in Mathematical, ed. by S. Wallace (Springer, Berlin, 1989), pp. 91–113

    Google Scholar 

  • J. Yen, Y. Yan, J. Contreras, P.-C. Ma, F.W. Felix, Multi-agent approach to the planning of power transmission expansion. Decis. Support Syst. 28(3), 279–290 (2000)

    Google Scholar 

  • Yu. Ermoliev and R.J.-B. Wets, Numerical Techniques for Stochastic Optimization. Springer series in computational mathematics (1988)

    Google Scholar 

  • B. Zeng, L. Zhao, Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 41, 457–461 (2013)

    Google Scholar 

  • H. Zhang, V. Vittal, G. Heydt, An aggregated multi-cut decomposition algorithm for two-stage transmission expansion planning problems, in Power Energy Society General Meeting, 2015 (IEEE, New York, July 2015), pp. 1–5

    Google Scholar 

  • H. Zhang, V. Vittal, G.T. Heydt, J. Quintero, A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning. IEEE Trans. Power Syst. 27(2), 1125–1133 (2012)

    Google Scholar 

  • O. Ziaee, O. Alizadeh Mousavi, F. Choobineh, Co-optimization of transmission expansion planning and TCSC placement considering the correlation between wind and demand scenarios. IEEE Trans. Power Syst. 33(1), 206–215 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Baldick .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, input date for 13-bus system is provided (Tables 8, 9, and 10).

Table 8 Load and generation data in (MW)
Table 9 Existing transmission network data
Table 10 Candidate lines

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majidi, M., Baldick, R. (2020). Definition and Theory of Transmission Network Planning. In: Hesamzadeh, M.R., Rosellón, J., Vogelsang, I. (eds) Transmission Network Investment in Liberalized Power Markets. Lecture Notes in Energy, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-030-47929-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47929-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47928-2

  • Online ISBN: 978-3-030-47929-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics