Skip to main content

Physiology of Blood Pump Circulation in Heart Failure

  • Chapter
  • First Online:
Mechanical Support for Heart Failure

Abstract

In the current era of mechanical circulatory support, blood pumps play a crucial role in providing hemodynamic support in patients with end-stage chronic heart failure, and their use is expected to increase with the development of newer and better pumps. Optimal use of LVADs can facilitate LV unloading and reverse remodeling of the native heart. LVAD optimization, however, requires a comprehensive understanding of the physiology ventricular mechanics, the hemodynamics of blood pumps, and the interaction between the VAD, native ventricle, and the circulation. Knowledge of pump physiology is also vital for early identification and prevention of catastrophic conditions such as pump thrombosis and RV failure. In this chapter, we present a comprehensive clinically relevant review of the physiology of LVADs as applied to patients with chronic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    CAS  PubMed  Google Scholar 

  2. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96.

    CAS  PubMed  Google Scholar 

  3. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54(4):312–21.

    PubMed  Google Scholar 

  4. Kim G, Uriel N, Burkhoff D. Reverse remodeling and myocardial recovery in heart failure. Nat Rev Cardiol. 2018;15(2):83.

    CAS  PubMed  Google Scholar 

  5. Hunt SA, Frazier OH. Mechanical circulatory support and cardiac transplantation. Circulation. 1998;97(20):2079–90.

    CAS  PubMed  Google Scholar 

  6. Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, et al. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32(1):1–11.

    PubMed  Google Scholar 

  7. Haft J, Armstrong W, Dyke DB, Aaronson KD, Koelling TM, Farrar DJ, et al. Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices. Circulation. 2007;116(11 Suppl):I8–15.

    PubMed  Google Scholar 

  8. Pagani FD. Continuous-flow rotary left ventricular assist devices with “3rd generation” design. Semin Thorac Cardiovasc Surg. 2008;20(3):255–63.

    PubMed  Google Scholar 

  9. Farrar DJ, Bourque K, Dague CP, Cotter CJ, Poirier VL. Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor. ASAIO J. 2007;53(3):310–5.

    PubMed  Google Scholar 

  10. Capoccia M. Mechanical circulatory support for advanced heart failure: are we about to witness a new “Gold Standard”? J Cardiovasc Dev Dis. 2016;3(4):35.

    PubMed Central  Google Scholar 

  11. Tchoukina I, Smallfield MC, Shah KB. Device management and flow optimization on left ventricular assist device support. Crit Care Clin. 2018;34(3):453–63.

    PubMed  Google Scholar 

  12. Griffith BP, Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20; discussion S4–6.

    CAS  PubMed  Google Scholar 

  13. Martina J, de Jonge N, Rutten M, Kirkels JH, Klopping C, Rodermans B, et al. Exercise hemodynamics during extended continuous flow left ventricular assist device support: the response of systemic cardiovascular parameters and pump performance. Artif Organs. 2013;37(9):754–62.

    PubMed  Google Scholar 

  14. Potapov EV, Loebe M, Nasseri BA, Sinawski H, Koster A, Kuppe H, et al. Pulsatile flow in patients with a novel nonpulsatile implantable ventricular assist device. Circulation. 2000;102(19 Suppl 3):III183–7.

    CAS  PubMed  Google Scholar 

  15. Tagusari O, Yamazaki K, Litwak P, Antaki JF, Watach M, Gordon LM, et al. Effect of pressure-flow relationship of centrifugal pump on in vivo hemodynamics: a consideration for design. Artif Organs. 1998;22(5):399–404.

    CAS  PubMed  Google Scholar 

  16. Griffith K, Jenkins E, Pagani FD. First American experience with the Terumo DuraHeart left ventricular assist system. Perfusion. 2009;24(2):83–9.

    CAS  PubMed  Google Scholar 

  17. Chatterjee K. Coronary hemodynamics in heart failure and effects of therapeutic interventions. J Card Fail. 2009;15(2):116–23.

    PubMed  Google Scholar 

  18. Rodbard S, Williams CB, Rodbard D, Berglung E. Myocardial tension and oxygen uptake. Circ Res. 1964;14:139–49.

    CAS  PubMed  Google Scholar 

  19. Burkhoff D, Sayer G, Doshi D, Uriel N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol. 2015;66(23):2663–74.

    PubMed  Google Scholar 

  20. Burkhoff D, Naidu SS. The science behind percutaneous hemodynamic support: a review and comparison of support strategies. Catheter Cardiovasc Interv. 2012;80(5):816–29.

    PubMed  Google Scholar 

  21. Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Phys. 1979;236(3):H498–505.

    CAS  Google Scholar 

  22. Takaoka H, Takeuchi M, Odake M, Hayashi Y, Hata K, Mori M, et al. Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in human ventricle. Circulation. 1993;87(1):59–69.

    CAS  PubMed  Google Scholar 

  23. Uriel N, Sayer G, Annamalai S, Kapur NK, Burkhoff D. Mechanical unloading in heart failure. J Am Coll Cardiol. 2018;72(5):569–80.

    PubMed  Google Scholar 

  24. Hall JL, Fermin DR, Birks EJ, Barton PJ, Slaughter M, Eckman P, et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol. 2011;57(6):641–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sunagawa G, Byram N, Karimov JH, Horvath DJ, Moazami N, Starling RC, et al. In vitro hemodynamic characterization of HeartMate II at 6000 rpm: implications for weaning and recovery. J Thorac Cardiovasc Surg. 2015;150(2):343–8.

    PubMed  Google Scholar 

  26. Noor MR, Ho CH, Parker KH, Simon AR, Banner NR, Bowles CT. Investigation of the characteristics of HeartWare HVAD and Thoratec HeartMate II under steady and pulsatile flow conditions. Artif Organs. 2016;40(6):549–60.

    CAS  PubMed  Google Scholar 

  27. Burkhoff D, Dickstein ML, Schleicher T. Harvi – Online. Retrieved from https://harvi.online/ 2017 updated 4/29/2017. Available from: http://harvi.online/.

  28. Rich JD, Burkhoff D. HVAD flow waveform morphologies: theoretical foundation and implications for clinical practice. ASAIO J. 2017;63(5):526–35.

    PubMed  PubMed Central  Google Scholar 

  29. Ayre PJ, Vidakovic SS, Tansley GD, Watterson PA, Lovell NH. Sensorless flow and head estimation in the VentrAssist rotary blood pump. Artif Organs. 2000;24(8):585–8.

    CAS  PubMed  Google Scholar 

  30. Hornick P, Taylor K. Pulsatile and nonpulsatile perfusion: the continuing controversy. J Cardiothorac Vasc Anesth. 1997;11(3):310–5.

    CAS  PubMed  Google Scholar 

  31. Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120(23):2352–7.

    PubMed  Google Scholar 

  32. Bourque K, Dague C, Farrar D, Harms K, Tamez D, Cohn W, et al. In vivo assessment of a rotary left ventricular assist device-induced artificial pulse in the proximal and distal aorta. Artif Organs. 2006;30(8):638–42.

    PubMed  Google Scholar 

  33. Guan Y, Karkhanis T, Wang S, Rider A, Koenig SC, Slaughter MS, et al. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artif Organs. 2010;34(7):529–36.

    PubMed  Google Scholar 

  34. Cornwell WK 3rd, Tarumi T, Stickford A, Lawley J, Roberts M, Parker R, et al. Restoration of pulsatile flow reduces sympathetic nerve activity among individuals with continuous-flow left ventricular assist devices. Circulation. 2015;132(24):2316–22.

    PubMed  Google Scholar 

  35. Zimpfer D, Strueber M, Aigner P, Schmitto JD, Fiane AE, Larbalestier R, et al. Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. Eur J Cardiothorac Surg. 2016;50(5):839–48.

    PubMed  Google Scholar 

  36. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–39.

    PubMed  Google Scholar 

  37. Uriel N, Sayer G, Addetia K, Fedson S, Kim GH, Rodgers D, et al. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail. 2016;4(3):208–17.

    PubMed  Google Scholar 

  38. Uriel N, Morrison KA, Garan AR, Kato TS, Yuzefpolskaya M, Latif F, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol. 2012;60(18):1764–75.

    PubMed  PubMed Central  Google Scholar 

  39. Uriel N, Levin AP, Sayer GT, Mody KP, Thomas SS, Adatya S, et al. Left ventricular decompression during speed optimization ramps in patients supported by continuous-flow left ventricular assist devices: device-specific performance characteristics and impact on diagnostic algorithms. J Card Fail. 2015;21(10):785–91.

    PubMed  Google Scholar 

  40. Imamura T, Burkhoff D, Rodgers D, Adatya S, Sarswat N, Kim G, et al. Repeated ramp tests on stable LVAD patients reveal patient-specific hemodynamic fingerprint. ASAIO J. 2018;64(6):701–7.

    PubMed  Google Scholar 

  41. Grinstein J, Imamura T, Kruse E, Kalantari S, Rodgers D, Adatya S, et al. Echocardiographic predictors of hemodynamics in patients supported with left ventricular assist devices. J Card Fail. 2018;24(9):561–7.

    PubMed  PubMed Central  Google Scholar 

  42. Pennings KA, Martina JR, Rodermans BF, Lahpor JR, van de Vosse FN, de Mol BA, et al. Pump flow estimation from pressure head and power uptake for the HeartAssist5, HeartMate II, and HeartWare VADs. ASAIO J. 2013;59(4):420–6.

    CAS  PubMed  Google Scholar 

  43. Klotz S, Deng MC, Stypmann J, Roetker J, Wilhelm MJ, Hammel D, et al. Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Ann Thorac Surg. 2004;77(1):143–9; discussion 9–50.

    PubMed  Google Scholar 

  44. Garcia S, Kandar F, Boyle A, Colvin-Adams M, Lliao K, Joyce L, et al. Effects of pulsatile- and continuous-flow left ventricular assist devices on left ventricular unloading. J Heart Lung Transplant. 2008;27(3):261–7.

    PubMed  Google Scholar 

  45. Farrar DJ, Compton PG, Hershon JJ, Fonger JD, Hill JD. Right heart interaction with the mechanically assisted left heart. World J Surg. 1985;9(1):89–102.

    CAS  PubMed  Google Scholar 

  46. Imamura T, Chung B, Nguyen A, Rodgers D, Sayer G, Adatya S, et al. Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ Heart Fail. 2017;10(9):e003882.

    PubMed  PubMed Central  Google Scholar 

  47. Nassif ME, Tibrewala A, Raymer DS, Andruska A, Novak E, Vader JM, et al. Systolic blood pressure on discharge after left ventricular assist device insertion is associated with subsequent stroke. J Heart Lung Transplant. 2015;34(4):503–8.

    PubMed  Google Scholar 

  48. Patil NP, Mohite PN, Sabashnikov A, Dhar D, Weymann A, Zeriouh M, et al. Does postoperative blood pressure influence development of aortic regurgitation following continuous-flow left ventricular assist device implantation? Eur J Cardiothorac Surg. 2016;49(3):788–94.

    PubMed  Google Scholar 

  49. Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2014;33(1):23–34.

    PubMed  Google Scholar 

  50. Akimoto T, Yamazaki K, Litwak P, Litwak KN, Tagusari O, Mori T, et al. Relationship of blood pressure and pump flow in an implantable centrifugal blood pump during hypertension. ASAIO J. 2000;46(5):596–9.

    CAS  PubMed  Google Scholar 

  51. Fagard R. Athlete’s heart. Circulation. 2001;103(6):E28–9.

    CAS  PubMed  Google Scholar 

  52. Fresiello L, Rademakers F, Claus P, Ferrari G, Di Molfetta A, Meyns B. Exercise physiology with a left ventricular assist device: analysis of heart-pump interaction with a computational simulator. PLoS One. 2017;12(7):e0181879.

    PubMed  PubMed Central  Google Scholar 

  53. Loyaga-Rendon RY, Plaisance EP, Arena R, Shah K. Exercise physiology, testing, and training in patients supported by a left ventricular assist device. J Heart Lung Transplant. 2015;34(8):1005–16.

    PubMed  Google Scholar 

  54. Hayward CS, Fresiello L, Meyns B. Exercise physiology in chronic mechanical circulatory support patients: vascular function and beyond. Curr Opin Cardiol. 2016;31(3):292–8.

    PubMed  Google Scholar 

  55. Pina IL, Apstein CS, Balady GJ, Belardinelli R, Chaitman BR, Duscha BD, et al. Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation. 2003;107(8):1210–25.

    PubMed  Google Scholar 

  56. Akimoto T, Yamazaki K, Litwak P, Litwak KN, Tagusari O, Mori T, et al. Rotary blood pump flow spontaneously increases during exercise under constant pump speed: results of a chronic study. Artif Organs. 1999;23(8):797–801.

    CAS  PubMed  Google Scholar 

  57. Muthiah K, Gupta S, Otton J, Robson D, Walker R, Tay A, et al. Body position and activity, but not heart rate, affect pump flows in patients with continuous-flow left ventricular assist devices. JACC Heart Fail. 2014;2(4):323–30.

    PubMed  Google Scholar 

  58. Hu SX, Keogh AM, Macdonald PS, Kotlyar E, Robson D, Harkess M, et al. Interaction between physical activity and continuous-flow left ventricular assist device function in outpatients. J Card Fail. 2013;19(3):169–75.

    CAS  PubMed  Google Scholar 

  59. Jacquet L, Vancaenegem O, Pasquet A, Matte P, Poncelet A, Price J, et al. Exercise capacity in patients supported with rotary blood pumps is improved by a spontaneous increase of pump flow at constant pump speed and by a rise in native cardiac output. Artif Organs. 2011;35(7):682–90.

    PubMed  Google Scholar 

  60. Schima H, Vollkron M, Jantsch U, Crevenna R, Roethy W, Benkowski R, et al. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization. J Heart Lung Transplant. 2006;25(2):167–73.

    PubMed  Google Scholar 

  61. Brassard P, Jensen AS, Nordsborg N, Gustafsson F, Moller JE, Hassager C, et al. Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device: constant versus increasing pump speed: a pilot study. Circ Heart Fail. 2011;4(5):554–60.

    PubMed  Google Scholar 

  62. Muthiah K, Robson D, Prichard R, Walker R, Gupta S, Keogh AM, et al. Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(4):522–9.

    PubMed  Google Scholar 

  63. Burkhoff D, Dickstein ML, Schleicher T. Harvi – Online. Retrieved from http://harvi.online/. 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Burkhoff MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, A., Uriel, N., Burkhoff, D. (2020). Physiology of Blood Pump Circulation in Heart Failure. In: Karimov, J., Fukamachi, K., Starling, R. (eds) Mechanical Support for Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-030-47809-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47809-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47808-7

  • Online ISBN: 978-3-030-47809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics