Skip to main content

History of Pediatric Devices for Mechanical Circulatory Support

  • Chapter
  • First Online:
Mechanical Support for Heart Failure

Abstract

The pioneers that blazed the trail for the development of circulatory support devices were highly motivated to develop technology so that they could operate on pediatric patients with congenital heart diseases. Without diagnostic imaging or cardiopulmonary bypass, surgeons could only guess at a diagnosis and attempt to surgically repair the tiny pediatric heart within minutes. Step by step, the window to operate was extended by introducing hypothermia, novel oxygenators, and ultimately with cleverly designed pumps. Cardiopulmonary bypass was the product of pediatric surgeons and engineers. This chapter reviews many of the events and pioneers that led to the birth of pediatric circulatory support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dutkowski P, de Rougemont O, Clavien PA. Alexis Carrel: genius, innovator and ideologist. Am J Transplant. 2008;8(10):1998–2003.

    CAS  PubMed  Google Scholar 

  2. Dabbagh A, Conte AH, Lubin L. Congenital heart disease in pediatric and adult patients: anesthetic and perioperative management. Cham: Springer; 2017.

    Google Scholar 

  3. Randolph JG, Robert E. Gross lecture notes on the early development of pediatric surgery in the United States. J Pediatr Surg. 2012;47:10–6.

    PubMed  Google Scholar 

  4. Gott VL. And it happened during our lifetime. Ann Thorac Surg. 1993;55(5):1057–64.

    CAS  PubMed  Google Scholar 

  5. Cooley AC. 100,000 hearts: a surgeon’s memoir. 1st ed. Austin: Dolph Briscoe Center for American History, University of Texas at Austin; 2012.

    Google Scholar 

  6. Cooley DA, McNamara DR, Latson JR. Aorticopulmonary septal defect: diagnosis and surgical treatment. Surgery (St. Louis). 1957;42:101.

    CAS  Google Scholar 

  7. Braile PM, de Godoy F. Paths to Cardiology. Braz Arch Cardiol. 1996;66:1.

    Google Scholar 

  8. Lewis FJ, Taufic M. Closure of atrial septal defects with the aid of hypothermia: experimental accomplishments and the report of one successful case. Surgery (St. Louis). 1953;33:52.

    CAS  Google Scholar 

  9. Lillehei CW. The Society Lecture. European Society for Cardiovascular Surgery Meeting, Montpellier, France, September 1992. The birth of open-heart surgery: then the golden years. Cardiovasc Surg. 1994;2(3):308–17.

    CAS  PubMed  Google Scholar 

  10. Miller GW. King of hearts. The true story of a maverick who pioneered open heart surgery. New York: Crown Publishers; 2000.

    Google Scholar 

  11. Lillehei CW, Cohen M, Warden HE, Varco RL. The direct vision intracardiac correction of congenital anomalies by controlled cross circulation. Results in thirty-two patients with ventricular septal defects, tetralogy of Fallot, and atrioventricularis communis defects. Surgery. 1955;38:11–29.

    CAS  PubMed  Google Scholar 

  12. DeWall RA, Warden H, Read RC, Gott V, Ziegler R, Varco R, Lillehei CW. A simple, expendable, artificial oxygenator for open heart surgery. Surg Clin N Am. 1956;4(36):1025–34.

    Google Scholar 

  13. Coher M, Lillehei CW. A quantitative study of the azygos factor during vena caval occlusion in the dog. Surg Gynecol Obstet. 1954;98:225–32.

    Google Scholar 

  14. DeBakey M. A simple continuous-flow blood transfusion instrument. New Orleans Med Surg J. 1934;87:386–9.

    Google Scholar 

  15. DeBakey Archives at the National Library of Medicine: Interview by Dan Schanche, Tape #5 – Side A, Pierre Hotel, New York.

    Google Scholar 

  16. Gibbon JH. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med. 1954;37:171–85.

    PubMed  Google Scholar 

  17. Murtra M. The adventure of cardiac surgery. Eur J Cardiothorac Surg. 2002;21:167–80.

    PubMed  Google Scholar 

  18. Dennis C, Spreng DS, Nelson GE, et al. Development of a pump oxygenator to replace the heart and lungs: an apparatus applicable to human patients, and application to one case. Ann Surg. 1951;134:709–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Norwood WI, Lang P, Hansen DD. Physiologic repair of aortic atresia hypoplastic left heart syndrome. N Engl J Med. 1983;308:23–6.

    CAS  PubMed  Google Scholar 

  20. Glenn WWL. Circulatory bypass of the right side of the heart: IV. Shunt between superior vena cava and distal right pulmonary artery: report of clinical application. N Engl J Med. 1958;259:117.

    CAS  PubMed  Google Scholar 

  21. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26:240–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rashkind WJ, Miller WW. Creation of an atrial septal defect without thoracotomy. A palliative approach to complete transposition of the arteries. JAMA. 1966;196:991–2.

    CAS  PubMed  Google Scholar 

  23. Edler I, Hertz CH. Use of ultrasonic reflectoscope for continuous recording of movement of heart walls. Kungl Fysiogr Sallsk Lund Forhandl. 1954;24:5–9.

    Google Scholar 

  24. Lim MW. The history of extracorporeal oxygenators. Anesthesia. 2006 Oct;61(10):984–95.

    CAS  Google Scholar 

  25. Brukhonenko SS, Tchechulin SI. Experiments on isolation of dog’s head. Trudi Nauchnogo Khimiko-Pharm Inst. 1928;20:7–43.

    Google Scholar 

  26. Kolff WJ, Berk TJ. Artificial kidney: dialyzer with great area. Acta Med Scand. 1944;117:121–34.

    Google Scholar 

  27. Kirklin JW, DuShane JW, Patrick RT, Donald DE, Hetzel PS, Harshbarger HG, Wood HE. Intracardiac surgery with the aid of a mechanical pumpoxygenator system (gibbon type): report of eight cases. Mayo Clin Proc. 1955;30:201–6.

    CAS  Google Scholar 

  28. Clowes GHA Jr, Neville WE. Further development of a blood oxygenator dependent upon the diffusion of gases through plastic membranes. Trans Am Soc Artif Intern Organs. 1957;3:52–8.

    Google Scholar 

  29. Rashkind WJ, Freeman A, Klein D, Toft RW. Evaluation of a disposable plastic, low volume, pumpless oxygenator as a lung substitute. J Pediatr. 1965;66:94–102.

    CAS  PubMed  Google Scholar 

  30. Dorson W Jr, Baker E, Cohen ML, Meyer B, Molthan M, Trump D. A perfusion system for infants. Trans Am Soc Artif Intern Organs. 1969;15:155–60.

    PubMed  Google Scholar 

  31. Baffes T, Patel K, Jegathesan S. Total cardiopulmonary bypass with the Lan-dé-Edwards membrane oxygenator. Am J Cardiol. 1972;29:672–7.

    CAS  PubMed  Google Scholar 

  32. Hill JD, O’Brien TG, Murray JJ, et al. Extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome): use of the Bramson Membrane Lung. N Engl J Med. 1972;286:629–34.

    CAS  PubMed  Google Scholar 

  33. Bartlett RH, Gazzaniga AB, Jefferies R, et al. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. Trans Am Soc Artif Intern Organs. 1976;22:80–8.

    CAS  PubMed  Google Scholar 

  34. Wolfson P. The development and use of extracorporeal membrane oxygenation in neonates. Presented at the symposium, “Gibbon & His Heart-Lung Machine: 50 Years & Beyond;” 2003 May 2; Philadelphia. 2003 Dec; 76(6). p. S2224–9.

    Google Scholar 

  35. Kolobow T, Gattinoni L, Tomlinson T, White D, Pierce J, Iapichino G. The carbon dioxide membrane lung (CDML): a new concept. Trans Am Soc Artif Intern Organs. 1977;23:17–21.

    CAS  PubMed  Google Scholar 

  36. ELSO Registry Publications. Available from: https://www.elso.org/Publications.aspx.

  37. Sidebotham D. Extracorporeal membrane oxygenation—understanding the evidence: CESAR and beyond. J Extra Corpor Technol. 2011;43(1):23–6.

    Google Scholar 

  38. Combes A, Pesenti A, Ranieri VM. Fifty years of research in ARDS. Is extracorporeal circulation the future of acute respiratory distress syndrome management? Am J Respir Crit Care Med. 2017;195(9):1161–70.

    PubMed  Google Scholar 

  39. De Bakey ME, Liotta D, Hall CW. Left-heart bypass using an implantable blood pump. Mechanical devices to assist the failing heart, vol. 1283. Washington, DC: National Academy of Sciences–National Research Council; 1966. p. 223–9.

    Google Scholar 

  40. DeBakey ME. Left ventricular bypass pump for cardiac assistance. Am J Cardiol. 1971;27:3–11.

    CAS  PubMed  Google Scholar 

  41. Cooley DA, Liotta D, Hallman GL, Bloodwell RD, Leachman RD, Milam JD. Orthotopic cardiac prosthesis for two-staged cardiac replacement. Am J Cardiol. 1969;24:723–30.

    CAS  PubMed  Google Scholar 

  42. McRae D. Every second counts. The race to transplant the first human heart. New York: Berkley Books; 2006.

    Google Scholar 

  43. Kantrowitz A, Tjønneland S, Freed PS, et al. Initial clinical experience with intra-aortic balloon pumping in cardiogenic shock. JAMA. 1968;203(2):113–8.

    CAS  PubMed  Google Scholar 

  44. Phillips S, Jaron D, Freed P, Zorzi G, Aris A, Kantrowitz A. Hemodynamic studies with a permanently implanted left ventricular assist device. Am J Cardiol. 1972;29(2):285–6.

    Google Scholar 

  45. Lynch MF, Peterson D, Baker V. Centrifugal blood pumping for open-heart surgery. Minn Med. 1978;61:536–7.

    CAS  PubMed  Google Scholar 

  46. Los Angeles Times. “Medtronic Agrees to Acquire Bio-Medicus”. 1990 June 9; Associated Press.

    Google Scholar 

  47. Huang SC, Chi NH, Chen CA, Chen YS, Chou NK, Ko WJ, Wang SS. Left ventricular assist for pediatric patients with dilated cardiomyopathy using the Medos VAD cannula and a centrifugal pump. Artificial organs. Abstract from the 5th international conference on pediatric mechanical circulatory support systems & pediatric cardiopulmonary perfusion; 2009 May 27–30. Dallas.

    Google Scholar 

  48. Pierce WS, Donachy JH, Landis DL, Brighton JA, Rosenberg G, Migliore JJ, Prophet GA, White WJ, Waldhausen JA. Prolonged mechanical support of the left ventricle. Circulation. 1978;58(3 Pt 2):133–46.

    Google Scholar 

  49. Throckmorton AL, Allaire PE, Gutgesell HP, Matherne GP, Olsen DB, Wood HG, Allaire JH, Patel SM. Pediatric circulatory support systems. ASAIO J. 2002;48(3):216–21.

    PubMed  Google Scholar 

  50. Jassawalla JS, Daniel MA, Chen H, Lee J, LaForge D, Billich J, Ramasamy N, Miller PJ, Oyer PE, Portner PM. In vitro and in vivo testing of a totally implantable left ventricular assist system. ASAIO Trans. 1988;34(3):470–5.

    CAS  PubMed  Google Scholar 

  51. Frazier OH, Bricker JT, Macris M, Cooley DA. Use of a left ventricular assist device as a bridge to transplant in a pediatric patient. Tex Heart Inst J. 1989;16:46–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Takano H, Nakatani T. Ventricular assist systems: experience in Japan with Toyobo pump and Zeon pump. Ann Thorac Surg. 1996;61(1):317–22.

    CAS  PubMed  Google Scholar 

  53. Butler KC, Moise JC, Wampler RK. The Hemopump--a new cardiac prothesis device. IEEE Trans Biomed Eng. 1990;37(2):193–6.

    CAS  PubMed  Google Scholar 

  54. Frazier OH, Wampler RK, Duncan JM, Dear WE, Macris MP, Parnis SM, Fuqua JM. First human use of the Hemopump, a catheter-mounted ventricular assist device. Ann Thorac Surg. 1990;49(2):299–304.

    CAS  PubMed  Google Scholar 

  55. Rose EA, Moskowitz M, Packer M, et al. The REMATCH trial: rationale, design, and end points. Ann Thorac Surg. 1999;67:723–30.

    CAS  PubMed  Google Scholar 

  56. Borisenko O, Wylie G, Payne J, et al. The cost impact of short-term ventricular assist devices and extracorporeal life support systems therapies on the National Health Service in the UK. Interact Cardiovasc Thorac Surg. 2014;19:141–8.

    Google Scholar 

  57. Hetzer R, Alexi-Meskishvili V, Weng Y, Hübler M, Potapov E, Drews T, Hennig E, Kaufmann F, Stiller B. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years’ experience. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006;9:99–108.

    Google Scholar 

  58. Dimas VV, Murthy R, Guleserian KJ. Utilization of the Impella 2.5 micro-axial pump in children for acute circulatory support. Catheter Cardiovasc Interv. 2014;83(2):261–2.

    PubMed  Google Scholar 

  59. Murthy R, Brenes J, Dimas VV, Guleserian KJ. Ringed polytetrafluoroethylene (Gore-Tex) tunneled “chimney” graft for pediatric use of Impella 2.5 axial flow pump. J Thorac Cardiovasc Surg. 2014;147(4):1421–2.

    PubMed  Google Scholar 

  60. Kar B, Adkins L, Civitello A, Loyalka P, Palanichamy N, Gemmato C, Myers T, Gregoric I, Delgado R. Clinical experience with the TandemHeart® percutaneous ventricular assist device. Tex Heart Inst J. 2006;33(2):111–5.

    PubMed  PubMed Central  Google Scholar 

  61. Adachi I, Jaquiss R. Mechanical circulatory support in children. Curr Cardiol Rev. 2016;12(2):132–40.

    PubMed  PubMed Central  Google Scholar 

  62. Almond CS, Singh TP, Gauvreau K, Piercey GE, Fynn-Thompson F, Rycus PT, Bartlett RH, Thiagarajan RR. Extracorporeal membrane oxygenation for bridge to heart transplantation among children in the United States: analysis of data from the Organ Procurement and Transplant Network and Extracorporeal Life Support Organization Registry. Circulation. 2011;123(25):2975–84.

    PubMed  Google Scholar 

  63. Baldwin JT, Borovetz HS, Duncan BW, Gartner MJ, Jarvik RK, Weiss WJ, Hoke TR. The national heart, lung, and blood institute pediatric circulatory support program. Circulation. 2006;113(1):147–55.

    PubMed  Google Scholar 

  64. Baldwin JT, Adachi I, Teal J, Almond CA, Jaquiss RD, Massicotte MP, Dasse K, Siami FS, Zak V, Kaltman JR, Mahle WT, Jarvik R. Closing in on the PumpKIN trial of the Jarvik 2015 ventricular assist device. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2017;20:9–15.

    PubMed  PubMed Central  Google Scholar 

  65. Rodefeld M, Frankel SH, Giridharan G. Cavopulmonary assist: empowering the univentricular Fontan circulation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14(1):45–54.

    PubMed  PubMed Central  Google Scholar 

  66. Coghill PA, Kanchi S, Azartash-Namin Z, Long JW, Snyder TA. Benchtop von Willebrand factor testing: comparison of commercially available ventricular assist devices and evaluation of variables for a standardized test method. ASAIO J. 2018. https://doi.org/10.1097/MAT.0000000000000849. [Epub ahead of print].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Dasse PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasse, K.A., Petit, P.C. (2020). History of Pediatric Devices for Mechanical Circulatory Support. In: Karimov, J., Fukamachi, K., Starling, R. (eds) Mechanical Support for Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-030-47809-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47809-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47808-7

  • Online ISBN: 978-3-030-47809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics