Skip to main content

Status and Availability of a Total Artificial Heart

  • Chapter
  • First Online:
Mechanical Support for Heart Failure

Abstract

Few destinct total artificial hearts have been clinically implanted in humans, and most devices mimic the native heart artificial hearts have been clinically implanted in humans, and most devices mimic the native heart through a pulsatile positive-displacement pump. The success of these devices has been hampered by excessive complication rates, cumbersome size, and limited durability. Although a departure from normal physiology, continuous-flow devices allow for greater mechanical reliability, smaller size, better efficiency, reduced shear stress, and improved autonomous pulmonary-systemic blood flow balance compared to pulsatile devices. Although no such device is currently in clinical use, continuous-flow TAHs currently in development are showing promise for patients with severe biventricular failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colvin M, Smith JM, Hadley N, Skeans MA, Carrico R, Uccellini K, et al. OPTN/SRTR 2016 annual data report: heart. Am J Transplant. 2018;18(Suppl 1):291–362.

    PubMed  Google Scholar 

  2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.

    PubMed  PubMed Central  Google Scholar 

  3. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mancini D, Colombo PC. Left ventricular assist devices: a rapidly evolving alternative to transplant. J Am Coll Cardiol. 2015;65(23):2542–55.

    PubMed  Google Scholar 

  5. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dobbels F, et al. The registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report--2011. J Heart Lung Transplant. 2011;30(10):1078–94.

    PubMed  Google Scholar 

  6. Renlund DG. Building a bridge to heart transplantation. N Engl J Med. 2004;351(9):849–51.

    CAS  PubMed  Google Scholar 

  7. Goerlich CE, Frazier OH, Cohn WE. Previous challenges and current progress-the use of total artificial hearts in patients with end-stage heart failure. Expert Rev Cardiovasc Ther. 2016;14(10):1095–8.

    CAS  PubMed  Google Scholar 

  8. Purohit SN, Cornwell WK 3rd, Pal JD, Lindenfeld J, Ambardekar AV. Living without a pulse: the vascular implications of continuous-flow left ventricular assist devices. Circ Heart Fail. 2018;11(6):e004670.

    PubMed  PubMed Central  Google Scholar 

  9. Cohn WE, Timms DL, Frazier OH. Total artificial hearts: past, present, and future. Nat Rev Cardiol. 2015;12(10):609–17.

    PubMed  Google Scholar 

  10. LeGallois J. Experiments on the principles of life. Paris: D’Hautel; 1812.

    Google Scholar 

  11. Akutsu T, Kolff WJ. Permanent substitutes for valves and hearts. Am Soc Art Int Org. 1959;4:230–5.

    Google Scholar 

  12. SoRelle R. First AbioCor trial patient dies. Circulation. 2001;104(24):E9050–60.

    PubMed  Google Scholar 

  13. Hamilton A. Abiocor Artificial Heart2001 March 7, 2018. Available from: http://content.time.com/time/specials/packages/article/0,28804,1936165_1936238_1936258,00.html.

  14. Dowling RD, Gray LA Jr, Etoch SW, Laks H, Marelli D, Samuels L, et al. Initial experience with the AbioCor implantable replacement heart system. J Thorac Cardiovasc Surg. 2004;127(1):131–41.

    PubMed  Google Scholar 

  15. Samuels L, Entwistle J, Holmes E, Fitzpatrick J, Wechsler A. Use of the AbioCor replacement heart as destination therapy for end-stage heart failure with irreversible pulmonary hypertension. J Thorac Cardiovasc Surg. 2004;128(4):643–5.

    PubMed  Google Scholar 

  16. AbioCor implantable replaceable heart. Summary of safety and probable benefit - H04006. In: Administration FaD, editor, 2006.

    Google Scholar 

  17. SoRelle R. Third abiocor artificial heart implanted in Houston. Circulation. 2001;104(15):E9033–4.

    CAS  PubMed  Google Scholar 

  18. DeVries WC. The permanent artificial heart. Four case reports. JAMA. 1988;259(6):849–59.

    CAS  PubMed  Google Scholar 

  19. Sunagawa G, Horvath DJ, Karimov JH, Moazami N, Fukamachi K. Future prospects for the total artificial heart. Expert Rev Med Devices. 2016;13(2):191–201.

    CAS  PubMed  Google Scholar 

  20. Arabia FA, Cantor RS, Koehl DA, Kasirajan V, Gregoric I, Moriguchi JD, et al. Interagency registry for mechanically assisted circulatory support report on the total artificial heart. J Heart Lung Transplant. 2018;37:1304.

    PubMed  Google Scholar 

  21. Golding LR, Jacobs G, Murakami T, Takatani S, Valdes F, Harasaki H, et al. Chronic nonpulsatile blood flow in an alive, awake animal 34-day survival. Trans Am Soc Artif Intern Organs. 1980;26:251–5.

    CAS  PubMed  Google Scholar 

  22. Qian KX, Pi KD, Wang YP, Zhao MJ. Toward an implantable impeller total heart. ASAIO Trans. 1987;33(3):704–7.

    CAS  PubMed  Google Scholar 

  23. Frazier OH, Cohn WE. Continuous-flow total heart replacement device implanted in a 55-year-old man with end-stage heart failure and severe amyloidosis. Tex Heart Inst J. 2012;39(4):542–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Timms D, Fraser J, Hayne M, Dunning J, McNeil K, Pearcy M. The BiVACOR rotary biventricular assist device: concept and in vitro investigation. Artif Organs. 2008;32(10):816–9.

    PubMed  Google Scholar 

  25. Fumoto H, Horvath DJ, Rao S, Massiello AL, Horai T, Takaseya T, et al. In vivo acute performance of the Cleveland Clinic self-regulating, continuous-flow total artificial heart. J Heart Lung Transplant. 2010;29(1):21–6.

    PubMed  Google Scholar 

  26. Fukamachi K, Horvath DJ, Massiello AL, Fumoto H, Horai T, Rao S, et al. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study. J Heart Lung Transplant. 2010;29(1):13–20.

    PubMed  Google Scholar 

  27. Karimov JH, Moazami N, Kobayashi M, Sale S, Such K, Byram N, et al. First report of 90-day support of 2 calves with a continuous-flow total artificial heart. J Thorac Cardiovasc Surg. 2015;150(3):687–93 e1.

    PubMed  PubMed Central  Google Scholar 

  28. Karimov JH, Horvath DJ, Byram N, Sunagawa G, Kuban BD, Gao S, et al. Early in vivo experience with the pediatric continuous-flow total artificial heart. J Heart Lung Transplant. 2018;37(8):1029–34.

    PubMed  Google Scholar 

  29. Kleinheyer M, Timms DL, Greatrex NA, Masuzawa T, Frazier OH, Cohn WE. Pulsatile operation of the BiVACOR TAH - motor design, control and hemodynamics. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5659–62.

    PubMed  Google Scholar 

  30. Latremouille C, Carpentier A, Leprince P, Roussel JC, Cholley B, Boissier E, et al. A bioprosthetic total artificial heart for end-stage heart failure: results from a pilot study. J Heart Lung Transplant. 2018;37(1):33–7.

    PubMed  Google Scholar 

  31. Carpentier A, Latremouille C, Cholley B, Smadja DM, Roussel JC, Boissier E, et al. First clinical use of a bioprosthetic total artificial heart: report of two cases. Lancet. 2015;386(10003):1556–63.

    PubMed  Google Scholar 

  32. Bizouarn P, Roussel JC, Trochu JN, Perles JC, Latremouille C. Effects of pre-load variations on hemodynamic parameters with a pulsatile autoregulated artificial heart during the early post-operative period. J Heart Lung Transplant. 2018;37(1):161–3.

    PubMed  Google Scholar 

  33. Latremouille C, Duveau D, Cholley B, Zilberstein L, Belbis G, Boughenou MF, et al. Animal studies with the Carmat bioprosthetic total artificial heart. Eur J Cardiothorac Surg. 2015;47(5):e172–8; discussion e8-9.

    PubMed  Google Scholar 

  34. Smadja DM, Susen S, Rauch A, Cholley B, Latremouille C, Duveau D, et al. The Carmat bioprosthetic total artificial heart is associated with early hemostatic recovery and no acquired von Willebrand syndrome in calves. J Cardiothorac Vasc Anesth. 2017;31(5):1595–602.

    PubMed  Google Scholar 

  35. CARMAT completes patient enrollment in the first part of the PIVOTAL study in line with the objective of obtaining CE marking in 2019 [press release]. July 11th, 2018.

    Google Scholar 

  36. Pelletier B, Spiliopoulos S, Finocchiaro T, Graef F, Kuipers K, Laumen M, et al. System overview of the fully implantable destination therapy--ReinHeart-total artificial heart. Eur J Cardiothorac Surg. 2015;47(1):80–6.

    PubMed  Google Scholar 

  37. Arabia FA, Moriguchi JD. Machines versus medication for biventricular heart failure: focus on the total artificial heart. Futur Cardiol. 2014;10(5):593–609.

    CAS  Google Scholar 

  38. Miller LW, Rogers JG. Evolution of left ventricular assist device therapy for advanced heart failure: a review. JAMA Cardiol. 2018;3(7):650–8.

    PubMed  Google Scholar 

  39. Wells D, Villa CR, Simon Morales DL. The 50/50 cc total artificial heart trial: extending the benefits of the total artificial heart to underserved populations. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2017;20:16–9.

    PubMed  Google Scholar 

  40. Villa CR, Morales DLS. The total artificial heart in end-stage congenital heart disease. Front Physiol. 2017;8:131.

    PubMed  PubMed Central  Google Scholar 

  41. Morales DL, Khan MS, Gottlieb EA, Krishnamurthy R, Dreyer WJ, Adachi I. Implantation of total artificial heart in congenital heart disease. Semin Thorac Cardiovasc Surg. 2012;24(2):142–3.

    PubMed  Google Scholar 

  42. Kirsch ME, Nguyen A, Mastroianni C, Pozzi M, Leger P, Nicolescu M, et al. SynCardia temporary total artificial heart as bridge to transplantation: current results at la pitie hospital. Ann Thorac Surg. 2013;95(5):1640–6.

    PubMed  Google Scholar 

  43. Kirsch M, Mazzucotelli JP, Roussel JC, Bouchot O, N'Loga J, Leprince P, et al. Survival after biventricular mechanical circulatory support: does the type of device matter? J Heart Lung Transplant. 2012;31(5):501–8.

    PubMed  Google Scholar 

  44. Rossano JW, Goldberg DJ, Fuller S, Ravishankar C, Montenegro LM, Gaynor JW. Successful use of the total artificial heart in the failing Fontan circulation. Ann Thorac Surg. 2014;97(4):1438–40.

    PubMed  Google Scholar 

  45. Morales DLS, Lorts A, Rizwan R, Zafar F, Arabia FA, Villa CR. Worldwide experience with the syncardia total artificial heart in the pediatric population. ASAIO J. 2017;63(4):518–9.

    PubMed  Google Scholar 

  46. Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC, et al. Does pulsatility matter in the era of continuous-flow blood pumps? J Heart Lung Transplant. 2015;34(8):999–1004.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Moazami MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phillips, K.G., Ranganath, N.K., Moazami, N. (2020). Status and Availability of a Total Artificial Heart. In: Karimov, J., Fukamachi, K., Starling, R. (eds) Mechanical Support for Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-030-47809-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47809-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47808-7

  • Online ISBN: 978-3-030-47809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics