Skip to main content

Mechanical Circulatory Support for Biventricular Failure: Patient Selection and Management Options

  • Chapter
  • First Online:
Mechanical Support for Heart Failure

Abstract

Nearly half of all individuals with heart failure with reduced ejection fraction have biventricular dysfunction. By unloading the left ventricle and decreasing left atrial pressures, there is a reasonable chance for right ventricular recovery after left ventricular assist device. Unfortunately, the opposite is also true where right ventricular failure can be unmasked, develop, or worsen. This chapter will focus on the patient selection and management of individuals with pre-existing biventricular failure either from chronic left ventricular failure or dilated cardiomyopathies, as well as those who develop right ventricular failure after left ventricular assist devices have been placed. We will discuss methods for risk stratifying individuals with biventricular dysfunction and pre-, peri-, and postoperative management strategies for improving right ventricular recovery and survival to transplant in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BiVAD:

Biventricular assist device

CVP:

Central venous pressure

EF:

Ejection fraction

LVAD:

Left ventricular assist device

iNO:

Inhaled nitric oxide

INTERMACS:

Interagency Registry for Mechanically Assisted Circulatory Support

ISHLT:

International Society for Heart and Lung Transplantation

PAPi:

Pulmonary artery pulsatility index

PCWP:

Pulmonary capillary wedge pressure

PVR:

Pulmonary vascular resistance

MAP:

Mean arterial pressure

MR:

Mitral regurgitation

MVS:

Mitral valve surgery

RAP:

Right atrial pressure

RHC:

Right heart catheterization

RVAD:

Right ventricular assist device

RVF:

Right ventricular failure

RVSWI:

Right ventricular stroke work index

TR:

Tricuspid regurgitation

References

  1. Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342:1077–84.

    CAS  PubMed  Google Scholar 

  2. McKenna WJ, Maron BJ, Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circ Res. 2017;121:722–30.

    CAS  PubMed  Google Scholar 

  3. Konstam MA, Kiernan MS, Bernstein D, et al., on behalf of the American Heart Association Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; and Council on Cardiovascular Surgery and Anesthesia. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 2018;Apr 19.

    Google Scholar 

  4. Houston BA, Shah KB, Mehra MR, Tedford RJ. A new “twist” on right heart failure with left ventricular assist systems. J Heart Lung Transplant. 2017;36(7):701–7.

    PubMed  Google Scholar 

  5. Hayek S, Sims DB, Markham DW, Butler J, Kalogeropoulos AP. Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging. 2014;7:379–89.

    PubMed  PubMed Central  Google Scholar 

  6. Kimmaliardjuk DM, Ruel M. Cardiac passive-aggressive behavior? The right ventricle in patients with a left ventricular assist device. Expert Rev Cardiovasc Ther. 2017;15(4):267–76.

    CAS  PubMed  Google Scholar 

  7. Iglesias-Garriz I, Olalla-Gómez C, Garrote C, López-Benito M, Martín J, Alonso D, Rodríguez MA. Contribution of right ventricular dysfunction to heart failure mortality: a meta-analysis. Rev Cardiovasc Med. 2012;13:e62–9.

    PubMed  Google Scholar 

  8. Amsallem M, Mercier O, Kobayashi Y, Moneghetti K, Haddad F. Forgotten no more: a focused update on the right ventricle in cardiovascular disease. JACC Heart Fail. 2018;6(11):891–903.1.

    PubMed  Google Scholar 

  9. Interagency Registry for Mechanically Assisted Circulatory Support. Appendix A - adverse event definitions. UAB School of Medicine.http://www.uab.edu/medicine/intermacs/appendices/app-a-5-0. Accessed 9/6/2018.

  10. Bellavia D, Iacovoni A, Scardulla C, Moja L, Pilato M, Kushwaha SS, Senni M, Clemenza F, Agnese V, Falletta C, Romano G, Maalouf J, Dandel M. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail. 2017;19(7):926–46.

    CAS  PubMed  Google Scholar 

  11. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30.

    PubMed  Google Scholar 

  12. Dell'Aquila AM, Schneider SR, Stypmann J, Ellger B, Redwan B, Schlarb D, et al. Survival results after implantation of intrapericardial third-generation centrifugal assist device: an INTERMACS-matched comparison analysis. Artif Organs. 2014;38(5):383–90.

    PubMed  Google Scholar 

  13. Rich JD, Gosev I, Patel CB, Joseph S, Katz JN, Eckman PM, et al. The incidence, risk factors, and outcomes associated with late right-sided heart failure in patients supported with an axial-flow left ventricular assist device. J Heart Lung Transplant. 2017;36(1):50–8.

    PubMed  Google Scholar 

  14. MacGowan GA, Schueler S. Right heart failure after left ventricular assist device implantation: early and late. Curr Opin Cardiol. 2012;27(3):296–300.

    PubMed  Google Scholar 

  15. Kiernan MS, Grandin EW, Brinkley M Jr, Kapur NK, Pham DT, Ruthazer R et al. Early right ventricular assist device use in patients undergoing continuous-flow left ventricular assist device implantation: incidence and risk factors from the interagency registry for mechanically assisted circulatory support. Circ Heart Fail. 2017;10(10).

    Google Scholar 

  16. Cleveland JC, Naftel DC, Reece TB, Murray M, Antaki J, Pagani FD, et al. Survival after biventricular assist device implantation: an analysis of the interagency registry for mechanically assisted circulatory support database. J Heart Lung Transplant. 2011;30(8):862–9.

    PubMed  Google Scholar 

  17. Kirklin JK, Xie R, Cowger J, Nakatani T, Schueler S, Taylor R, et al. Second annual report from the ISHLT mechanically assisted circulatory support registry. J Heart Lung Transplant. 2018;37(6):685–91.

    PubMed  Google Scholar 

  18. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.

    PubMed  Google Scholar 

  19. LaRue SJ, Raymer DS, Pierce BR, Nassif ME, Sparrow CT, Vader JM. Clinical outcomes associated with INTERMACS-defined right heart failure after left ventricular assist device implantation. J Heart Lung Transplant. 2017;36(4):475–7.

    PubMed  Google Scholar 

  20. Yoshioka D, Takayama H, Garan RA, Topkara VK, Han J, Kurlansky P, et al. Contemporary outcome of unplanned right ventricular assist device for severe right heart failure after continuous-flow left ventricular assist device insertion. Interact Cardiovasc Thorac Surg. 2017;24(6):828–34.

    PubMed  Google Scholar 

  21. Cohen DG, Thomas JD, Freed BH, Rich JD, Sauer AJ. Echocardiography and continuous-flow left ventricular assist devices: evidence and limitations. JACC Heart Fail. 2015;3(7):554–64.

    PubMed  Google Scholar 

  22. Kato TS, Jiang J, Schulze PC, Jorde U, Uriel N, Kitada S, et al. Serial echocardiography using tissue Doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Fail. 2013;1(3):216–22.

    PubMed  PubMed Central  Google Scholar 

  23. Puwanant S, Hamilton KK, Klodell CT, Hill JA, Schofield RS, Cleeton TS, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27(10):1102–7.

    PubMed  Google Scholar 

  24. Dandel M, Potapov E, Krabatsch T, Stepanenko A, Löw A, Vierecke J, et al. Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation. 2013;128(11 Suppl 1):S14–23.

    PubMed  Google Scholar 

  25. Magunia H, Dietrich C, Langer HF, Schibilsky D, Schlensak C, Rosenberger P et al. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int J Cardiol. 2018. pii: S0167-5273.

    Google Scholar 

  26. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72.

    PubMed  PubMed Central  Google Scholar 

  27. Cameli M, Lisi M, Righini FM, Focardi M, Lunghetti S, Bernazzali S, et al. Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy. J Heart Lung Transplant. 2013;32(4):424–30.

    PubMed  Google Scholar 

  28. Vivo RP, Cordero-Reyes AM, Qamar U, Garikipati S, Trevino AR, Aldeiri M, et al. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32(8):792–9.

    PubMed  Google Scholar 

  29. Aissaoui N, Salem JE, Paluszkiewicz L, Morshuis M, Guerot E, Gorria GM, et al. Assessment of right ventricular dysfunction predictors before the implantation of a left ventricular assist device in end-stage heart failure patients using echocardiographic measures (ARVADE): combination of left and right ventricular echocardiographic variables. Arch Cardiovasc Dis. 2015;108(5):300–9.

    PubMed  Google Scholar 

  30. Kang G, Ha R. Banerjee D3. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35(1):67–73.

    PubMed  Google Scholar 

  31. Raina A, Seetha Rammohan HR, Gertz ZM, Rame JE, Woo YJ, Kirkpatrick JN. Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail. 2013;19(1):16–24.

    PubMed  Google Scholar 

  32. Soliman OII, Akin S, Muslem R, Boersma E, Manintveld OC, Krabatsch T, et al. EUROMACS Investigators. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices: the EUROMACS (European registry for patients with mechanical circulatory support) right-sided heart failure risk score. Circulation. 2018;137(9):891–906.

    PubMed  Google Scholar 

  33. Kato TS, Farr M, Schulze PC, Maurer M, Shahzad K, Iwata S, et al. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2012;109(2):246–51.

    PubMed  Google Scholar 

  34. Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60(6):521–8.

    PubMed  Google Scholar 

  35. Beck DR, Foley L, Rowe JR, Moss AF, Weitzel NS, Reece TB, et al. Right ventricular longitudinal strain in left ventricular assist device surgery-a retrospective cohort study. J Cardiothorac Vasc Anesth. 2017;31(6):2096–102.

    PubMed  PubMed Central  Google Scholar 

  36. Dandel M, Krabatsch T, Falk V. Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol. 2015;198:241–50.

    PubMed  Google Scholar 

  37. Cameli M, Loiacono F, Sparla S, Solari M, Iardino E, Mandoli GE, et al. Systematic left ventricular assist device implant eligibility with non-invasive assessment: the SIENA protocol. J Cardiovasc Ultrasound. 2017;25(2):39–46.

    PubMed  PubMed Central  Google Scholar 

  38. Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB, Weng Y, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27(12):1275–81.

    PubMed  Google Scholar 

  39. Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Redlin M, Mladenow A, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30(1):64–9.

    PubMed  Google Scholar 

  40. Ochiai Y, McCarthy PM, Smedira NG, Banbury MK, Navia JL, Feng J, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation. 2002;106(12 Suppl 1):I198–202.

    PubMed  Google Scholar 

  41. Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63; discussion 863-4.

    PubMed  PubMed Central  Google Scholar 

  42. Kinugawa K, Imamura T, Kato N, Endo M, Inaba T, Maki H, et al. Combination evaluation of preoperative risk indices predicts requirement of biventricular assist device. Circ J. 2012;76(12):2785–91.

    PubMed  Google Scholar 

  43. Fitzpatrick JR, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92.

    PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, et al. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant. 2012;31(2):140–9.

    PubMed  Google Scholar 

  45. Pettinari M, Jacobs S, Rega F, Verbelen T, Droogne W, Meyns B. Are right ventricular risk scores useful? Eur J Cardiothorac Surg. 2012;42(4):621–6.

    PubMed  Google Scholar 

  46. Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105(7):1030–5.

    PubMed  Google Scholar 

  47. Kalogeropoulos AP, Kelkar A, Weinberger JF, Morris AA, Georgiopoulou VV, Markham DW, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603.

    PubMed  Google Scholar 

  48. Nakanishi K, Homma S, Han J, Takayama H, Colombo PC, Yuzefpolskaya M, et al. Prevalence, predictors, and prognostic value of residual tricuspid regurgitation in patients with left ventricular assist device. J Am Heart Assoc. 2018;24:7(13).

    Google Scholar 

  49. Nakanishi K, Homma S, Han J, Takayama H, Colombo PC, Yuzefpolskaya M, et al. Usefulness of tricuspid annular diameter to predict late right sided heart failure in patients with left ventricular assist device. Am J Cardiol. 2018;122(1):115–20.

    PubMed  Google Scholar 

  50. Stainback RF, Estep JD, Agler DA, Birks EJ, Bremer M, Hung J, et al. American Society of Echocardiography. Echocardiography in the management of patients with left ventricular assist devices: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(8):853–909.

    PubMed  Google Scholar 

  51. Garcia-Alvarez A, Fernandez-Friera L, Lau JF, Sawit ST, Mirelis JG, Castillo JG, et al. Evaluation of right ventricular function and post-operative findings using cardiac computed tomography in patients with left ventricular assist devices. J Heart Lung Transplant. 2011;30(8):896–903.

    PubMed  Google Scholar 

  52. Lairez O, Delmas C, Fournier P, Cassol E, Méjean S, Pascal P, et al. Feasibility and accuracy of gated blood pool SPECT equilibrium radionuclide ventriculography for the assessment of left and right ventricular volumes and function in patients with left ventricular assist devices. J Nucl Cardiol. 2018;25(2):625–34.

    PubMed  Google Scholar 

  53. de Asua I, Rosenberg A. On the right side of the heart: medical and mechanical support of the failing right ventricle. J Intensive Care Soc. 2017;18(2):113–20.

    PubMed  PubMed Central  Google Scholar 

  54. Marzec LN, Ambardekar AV. Preoperative evaluation and perioperative management of right ventricular failure after left ventricular assist device implantation. Semin Cardiothorac Vasc Anesth. 2013;17(4):249–61.

    PubMed  Google Scholar 

  55. Antoniou T, Prokakis C, Athanasopoulos G, Thanopoulos A, Rellia P, Zarkalis D, et al. Inhaled nitric oxide plus iloprost in the setting of post-left assist device right heart dysfunction. Ann Thorac Surg. 2012;94(3):792–8.

    PubMed  Google Scholar 

  56. Sabato LA, Salerno DM, Moretz JD, Jennings DL. Inhaled pulmonary vasodilator therapy for management of right ventricular dysfunction after left ventricular assist device placement and cardiac transplantation. Pharmacotherapy. 2017;37(8):944–55.

    CAS  PubMed  Google Scholar 

  57. Critoph C, Green G, Hayes H, Baumwol J, Lam K, Larbalestier R, et al. Clinical outcomes of patients treated with pulmonary vasodilators early and in high dose after left ventricular assist device implantation. Artif Organs. 2016;40(1):106–14.

    CAS  PubMed  Google Scholar 

  58. Ntalianis A, Kapelios CJ, Kanakakis J, Repasos E, Pantsios C, Nana E, et al. Prolonged intra-aortic balloon pump support in biventricular heart failure induces right ventricular reverse remodeling. Int J Cardiol. 2015;192:3–8.

    PubMed  Google Scholar 

  59. Kapelios C, Terrovitis I, Ntalianis A, Kaldara E, Repasos E, Siskas P, et al. Intra-aortic balloon pump improves right ventricular function in patients with end-stage congestive heart failure. Circulation. 2018;128:A18182.

    Google Scholar 

  60. Shah P, Ha R, Singh R, Cotts W, Adler E, Kiernan M, et al. Multicenter experience with durable biventricular assist devices. J Heart Lung Transplant. 2018;37(9):1093–101.

    PubMed  Google Scholar 

  61. Takeda K, Naka Y, Yang JA, Uriel N, Colombo PC, Jorde UP, et al. Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant. 2014;33(2):141–8.

    PubMed  Google Scholar 

  62. Fitzpatrick JR, Frederick JR, Hiesinger W, Hsu VM, McCormick RC, Kozin ED, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137(4):971–7.

    PubMed  PubMed Central  Google Scholar 

  63. Kitada S, Kato TS, Thomas SS, Conwell SD, Russo C, Di Tullio MR, et al. Pre-operative echocardiographic features associated with persistent mitral regurgitation after left ventricular assist device implantation. J Heart Lung Transplant. 2013;32(9):897–904.

    PubMed  PubMed Central  Google Scholar 

  64. Ertugay S, Kemal HS, Kahraman U, Engin C, Nalbantgil S, Yagdi T, et al. Impact of residual mitral regurgitation on right ventricular systolic function after left ventricular assist device implantation. Artif Organs. 2017;41(7):622–7.

    PubMed  Google Scholar 

  65. Tanaka A, Onsager D, Song T, Cozadd D, Kim G, Sarswat N, et al. Surgically corrected mitral regurgitation during left ventricular assist device implantation is associated with low recurrence rate and improved midterm survival. Ann Thorac Surg. 2017;103(3):725–33.

    PubMed  Google Scholar 

  66. Dunlay SM, Deo SV, Park SJ. Impact of tricuspid valve surgery at the time of left ventricular assist device insertion on postoperative outcomes. ASAIO J. 2015;61(1):15–20.

    PubMed  PubMed Central  Google Scholar 

  67. Han J, Takeda K, Takayama H, Kurlansky PA, Mauro CM, Colombo PC, et al. Durability and clinical impact of tricuspid valve procedures in patients receiving a continuous-flow left ventricular assist device. J Thorac Cardiovasc Surg. 2016;151(2):520–7.

    PubMed  Google Scholar 

  68. Song HK, Gelow JM, Mudd J, Chien C, Tibayan FA, Hollifield K, et al. Limited utility of tricuspid valve repair at the time of left ventricular assist device implantation. Ann Thorac Surg. 2016;101(6):2168–74.

    PubMed  PubMed Central  Google Scholar 

  69. Danter MR, McGee EC, Strueber M, Maltais S, Mokadam NA, Weisenthaler GM, et al. A prospective, controlled, un-blinded, multi-center clinical trial to evaluate the thoracotomy implant technique of the HVAD system in patients with advanced heart failure: results of the LATERAL trial. J Heart Lung Transplant. 2017;36(4):S66.

    Google Scholar 

  70. Slaughter MS, Pagani FD, McGee EC, Birks EJ, Cotts WG, Gregoric I, et al. Use of the HeartWare ventricular assist system for bridge to transplant: combined results of the ADVANCE and CAP trial. J Heart Lung Transplant. 2013;32:675–83.

    PubMed  Google Scholar 

  71. Morgan JA, Paone G, Nemeh HW, Murthy R, Williams CT, Lanfear DE, et al. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant. 2013;32(4):398–403.

    PubMed  Google Scholar 

  72. Imamura T, Chung B, Nguyen A, Sayer G, Uriel N. Clinical implications of hemodynamic assessment during left ventricular assist device therapy. J Cardiol. 2018;71(4):352–8.

    PubMed  Google Scholar 

  73. Potapov E, Meyer D, Swaminathan M, Ramsay M, El Banayosy A, Diehl C, et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30(8):870–8.

    PubMed  Google Scholar 

  74. Hamdan R, Mansour H, Nassar P, Saab M. Prevention of right heart failure after left ventricular assist device implantation by phosphodiesterase 5 inhibitor. Artif Organs. 2014;38(11):963–7.

    CAS  PubMed  Google Scholar 

  75. Wagner F, Dandel M, Günther G, Loebe M, Schulze-Neick I, Laucke U, et al. Nitric oxide inhalation in the treatment of right ventricular dysfunction following left ventricular assist device implantation. Circulation. 1997;96(9 Suppl):II-291-6.

    PubMed  Google Scholar 

  76. Argenziano M, Choudhri AF, Moazami N, Rose EA, Smith CR, Levin HR, et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65(2):340–5.

    CAS  PubMed  Google Scholar 

  77. Macdonald PS, Keogh A, Mundy J, Rogers P, Nicholson A, Harrison G, et al. Adjunctive use of inhaled nitric oxide during implantation of a left ventricular assist device. J Heart Lung Transplant. 1998;17(3):312–6.

    CAS  PubMed  Google Scholar 

  78. Baker WL, Radojevic J, Gluck JA. Systematic review of phosphodiesterase-5 inhibitor use in right ventricular failure following left ventricular assist device implantation. Artif Organs. 2016;40(2):123–8.

    CAS  PubMed  Google Scholar 

  79. Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tran HA, Pollema TL, Silva Enciso J, Greenberg BH, Barnard DD, Adler ED, et al. Durable biventricular support using right atrial placement of the HeartWare HVAD. ASAIO J. 2018;64(3):323–7.

    PubMed  Google Scholar 

  81. Cork DP, Tran HA, Silva J, Barnard D, Greenberg B, Adler ED, et al. A case series of biventricular circulatory support using two ventricular assist devices: a novel operative approach. Ann Thorac Surg. 2015;100(4):e75–7.

    PubMed  Google Scholar 

  82. Levin AP, Jaramillo N, Garan AR, Takeda K, Takayama H, Yuzefpolskaya M, et al. Outcomes of contemporary mechanical circulatory support device configurations in patients with severe biventricular failure. J Thorac Cardiovasc Surg. 2016;151(2):530–5.e2.

    PubMed  Google Scholar 

  83. Scherer M, Sirat AS, Moritz A, Martens S. Extracorporeal membrane oxygenation as perioperative right ventricular support in patients with biventricular failure undergoing left ventricular assist device implantation. Eur J Cardiothorac Surg. 2011;39(6):939–44.

    PubMed  Google Scholar 

  84. De Silva RJ, Soto C, Spratt P. Extra corporeal membrane oxygenation as right heart support following left ventricular assist device placement: a new cannulation technique. Heart Lung Circ. 2012;21(4):218–20.

    PubMed  Google Scholar 

  85. Leidenfrost J, Prasad S, Itoh A, Lawrance CP, Bell JM, Silvestry SC. Right ventricular assist device with membrane oxygenator support for right ventricular failure following implantable left ventricular assist device placement. Eur J Cardiothorac Surg. 2016;49(1):73–7.

    PubMed  Google Scholar 

  86. Schmack B, Weymann A, Popov AF, Patil NP, Sabashnikov A, Kremer J, et al. Concurrent Left Ventricular Assist Device (LVAD) implantation and percutaneous temporary RVAD support via CardiacAssist Protek-Duo TandemHeart to preempt right heart failure. Med Sci Monit Basic Res. 2016;22:53–7.

    PubMed  PubMed Central  Google Scholar 

  87. Saito S, Sakaguchi T, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, et al. Recovery of right heart function with temporary right ventricular assist using a centrifugal pump in patients with severe biventricular failure. J Heart Lung Transplant. 2012;31(8):858–64.

    PubMed  Google Scholar 

  88. Haneya A, Philipp A, Puehler T, Rupprecht L, Kobuch R, Hilker M, et al. Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation. Eur J Cardiothorac Surg. 2012;41(1):219–23.

    PubMed  Google Scholar 

  89. Sultan I, Kilic A. Short-term circulatory and right ventricle support in cardiogenic shock: extracorporeal membrane oxygenation, Tandem Heart, CentriMag, and Impella. Heart Fail Clin. 2018;14(4):579–83.

    PubMed  Google Scholar 

  90. Shehab S, Newton PJ, Allida SM, Jansz PC, Hayward CS. Biventricular mechanical support devices--clinical perspectives. Expert Rev Med Devices. 2016;13(4):353–65.

    CAS  PubMed  Google Scholar 

  91. Gregory SD, Timms D, Gaddum N, Mason DG, Fraser JF. Biventricular assist devices: a technical review. Ann Biomed Eng. 2011;39(9):2313–28.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Adler MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, K.N., Tran, H.A., Pretorius, V., Adler, E.D. (2020). Mechanical Circulatory Support for Biventricular Failure: Patient Selection and Management Options. In: Karimov, J., Fukamachi, K., Starling, R. (eds) Mechanical Support for Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-030-47809-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47809-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47808-7

  • Online ISBN: 978-3-030-47809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics