Skip to main content

The Cerebral Microcirculation

  • Chapter
  • First Online:
Microcirculation in Cardiovascular Diseases

Abstract

In this chapter, we briefly summarize the structure and physiology of the cerebral (micro)circulation. Specific features of the brain include the lack of a lymphatic system and the volume restrictions imposed by the skull. Strong autoregulation, collateral vessels, paravascular spaces, and a distribution of resistance over arteries, arterioles, and capillaries are characteristics of the cerebral vasculature. The neurovascular unit, consisting of a close interplay between capillary endothelial cells, pericytes, and astrocytes, allows regulation of blood flow down to the capillary level to meet local demand. At the level of the endothelium, the blood-brain barrier is a distinct feature of the cerebral vasculature. We then review more recent insights, mainly based on experimental research, regarding the pathophysiological changes that occur in the microcirculation associated with hypertension, stroke, microinfarcts, and dementia. These include impaired microvascular perfusion after stroke and novel mechanisms of clot extravasation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cipolla MJ. Integrated systems physiology: from molecule to function. The cerebral circulation. San Rafael, CA: Morgan & Claypool Life Sciences. Copyright (c) 2010 by Morgan & Claypool Life Sciences; 2009.

    Google Scholar 

  2. Chalothorn D, Clayton JA, Zhang H, Pomp D, Faber JE. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol Genomics. 2007;30(2):179–91.

    Article  CAS  PubMed  Google Scholar 

  3. Wang S, Zhang H, Dai X, Sealock R, Faber JE. Genetic architecture underlying variation in extent and remodeling of the collateral circulation. Circ Res. 2010;107(4):558–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH, Burnett MS, et al. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol. 2011;31(8):1748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blinder P, Shih AY, Rafie C, Kleinfeld D. Topological basis for the robust distribution of blood to rodent neocortex. Proc Natl Acad Sci U S A. 2010;107(28):12670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shih AY, Ruhlmann C, Blinder P, Devor A, Drew PJ, Friedman B, et al. Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. Microcirculation. 2015;22(3):204–18.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shih AY, Blinder P, Tsai PS, Friedman B, Stanley G, Lyden PD, et al. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci. 2013;16(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  8. Christensen KL, Mulvany MJ. Location of resistance arteries. J Vasc Res. 2001;38(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  9. Heistad DD, Marcus ML, Abboud FM. Role of large arteries in regulation of cerebral blood flow in dogs. J Clin Invest. 1978;62(4):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gould IG, Tsai P, Kleinfeld D, Linninger A. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab. 2017;37(1):52–68.

    Article  CAS  PubMed  Google Scholar 

  11. Haeren RH, van de Ven SE, van Zandvoort MA, Vink H, van Overbeeke JJ, Hoogland G, et al. Assessment and imaging of the cerebrovascular Glycocalyx. Curr Neurovasc Res. 2016;13(3):249–60.

    Article  PubMed  Google Scholar 

  12. Lee RM. Morphology of cerebral arteries. Pharmacol Ther. 1995;66(1):149–73.

    Article  CAS  PubMed  Google Scholar 

  13. Clifford PS, Ella SR, Stupica AJ, Nourian Z, Li M, Martinez-Lemus LA, et al. Spatial distribution and mechanical function of elastin in resistance arteries: a role in bearing longitudinal stress. Arterioscler Thromb Vasc Biol. 2011;31(12):2889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Badhwar A, Stanimirovic DB, Hamel E, Haqqani AS. The proteome of mouse cerebral arteries. J Cereb Blood Flow Metab. 2014;34(6):1033–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 2017;37(10):3300–17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  17. Faghih MM, Sharp MK. Is bulk flow plausible in perivascular, paravascular and paravenous channels? Fluids Barriers CNS. 2018;15(1):17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bedussi B, van der Wel NN, de Vos J, van Veen H, Siebes M, VanBavel E, et al. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: a single compartment with preferential pathways. J Cereb Blood Flow Metab. 2017;37(4):1374–85.

    Article  PubMed  Google Scholar 

  19. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11.

    Article  CAS  Google Scholar 

  20. Smith AJ, Verkman AS. The "glymphatic" mechanism for solute clearance in Alzheimer's disease: game changer or unproven speculation? FASEB J. 2018;32(2):543–51.

    Article  CAS  PubMed  Google Scholar 

  21. Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, et al. Lymphatic clearance of the brain: perivascular, Paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):181–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dacey RG Jr, Duling BR. A study of rat intracerebral arterioles: methods, morphology, and reactivity. Am J Phys. 1982;243(4):H598–606.

    Google Scholar 

  23. Gokina NI, Bevan RD, Walters CL, Bevan JA. Electrical activity underlying rhythmic contraction in human pial arteries. Circ Res. 1996;78(1):148–53.

    Article  CAS  PubMed  Google Scholar 

  24. Koller A, Toth P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J Vasc Res. 2012;49(5):375–89.

    Article  PubMed  Google Scholar 

  25. Toth P, Rozsa B, Springo Z, Doczi T, Koller A. Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors. J Cereb Blood Flow Metab. 2011;31(10):2096–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Wijk AE, Vogels IMC, van Veen HA, van Noorden CJF, Schlingemann RO, Klaassen I. Spatial and temporal recruitment of the neurovascular unit during development of the mouse blood-retinal barrier. Tissue Cell. 2018;52:42–50.

    Article  PubMed  CAS  Google Scholar 

  27. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34(1):207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia. 2016;64(7):1097–123.

    Article  PubMed  Google Scholar 

  30. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.

    Article  CAS  PubMed  Google Scholar 

  32. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science (New York, NY). 1997;277(5323):242–5.

    Article  CAS  Google Scholar 

  33. Park DY, Lee J, Kim J, Kim K, Hong S, Han S, et al. Plastic roles of pericytes in the blood-retinal barrier. Nat Commun. 2017;8:15296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A. 2010;107(51):22290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron. 2015;87(1):95–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol. 1994;340(4):566–76.

    Article  CAS  PubMed  Google Scholar 

  38. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  39. Ye X, Smallwood P, Nathans J. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain. Gene Expr Patterns. 2011;11(1–2):151–5.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, et al. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 2014;124(9):3825–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iadecola C, Yaffe K, Biller J, Bratzke LC, Faraci FM, Gorelick PB, et al. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension. 2016;68(6):e67–94.

    Article  CAS  PubMed  Google Scholar 

  42. Rizzoni D, De Ciuceis C, Porteri E, Paiardi S, Boari GE, Mortini P, et al. Altered structure of small cerebral arteries in patients with essential hypertension. J Hypertens. 2009;27(4):838–45.

    Article  CAS  PubMed  Google Scholar 

  43. Muller M, van der Graaf Y, Visseren FL, Mali WP, Geerlings MI. Hypertension and longitudinal changes in cerebral blood flow: the SMART-MR study. Ann Neurol. 2012;71(6):825–33.

    Article  PubMed  Google Scholar 

  44. Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304(12):H1598–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. Hypertension. 1989;13(6 Pt 2):968–72.

    Article  CAS  PubMed  Google Scholar 

  46. Yang ST, Mayhan WG, Faraci FM, Heistad DD. Endothelium-dependent responses of cerebral blood vessels during chronic hypertension. Hypertension. 1991;17(5):612–8.

    Article  CAS  PubMed  Google Scholar 

  47. Kaiser D, Weise G, Moller K, Scheibe J, Posel C, Baasch S, et al. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun. 2014;2:169.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mueller SM, Heistad DD. Effect of chronic hypertension on the blood-brain barrier. Hypertension. 1980;2(6):809–12.

    Article  CAS  PubMed  Google Scholar 

  49. Naessens DMP, de Vos J, VanBavel E, Bakker E. Blood-brain and blood-cerebrospinal fluid barrier permeability in spontaneously hypertensive rats. Fluids Barriers CNS. 2018;15(1):26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Calcinaghi N, Wyss MT, Jolivet R, Singh A, Keller AL, Winnik S, et al. Multimodal imaging in rats reveals impaired neurovascular coupling in sustained hypertension. Stroke. 2013;44(7):1957–64.

    Article  PubMed  Google Scholar 

  51. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer's disease and other cerebrovascular neuropathologic changes. Neurobiol Aging. 2015;36(10):2702–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brundel M, de Bresser J, van Dillen JJ, Kappelle LJ, Biessels GJ. Cerebral microinfarcts: a systematic review of neuropathological studies. J Cereb Blood Flow Metab. 2012;32(3):425–36.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Azarpazhooh MR, Avan A, Cipriano LE, Munoz DG, Sposato LA, Hachinski V. Concomitant vascular and neurodegenerative pathologies double the risk of dementia. Alzheimers Dement. 2018;14(2):148–56.

    Article  PubMed  Google Scholar 

  55. Hanyu H, Sato T, Hirao K, Kanetaka H, Iwamoto T, Koizumi K. The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study. J Neurol Sci. 2010;290(1–2):96–101.

    Article  PubMed  Google Scholar 

  56. Benedictus MR, Leeuwis AE, Binnewijzend MA, Kuijer JP, Scheltens P, Barkhof F, et al. Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer's disease. Eur Radiol. 2017;27(3):1169–75.

    Article  PubMed  Google Scholar 

  57. Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, Carlsson CM, et al. Effects of hypoperfusion in Alzheimer's disease. J Alzheimers Dis. 2011;26(Suppl 3):123–33.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Viswanathan A, Rocca WA, Tzourio C. Vascular risk factors and dementia: how to move forward? Neurology. 2009;72(4):368–74.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kelleher RJ, Soiza RL. Evidence of endothelial dysfunction in the development of Alzheimer's disease: is Alzheimer's a vascular disorder? Am J Cardiovasc Dis. 2013;3(4):197–226.

    PubMed  PubMed Central  Google Scholar 

  60. de la Torre J. The vascular hypothesis of Alzheimer's disease: a key to preclinical prediction of dementia using neuroimaging. J Alzheimers Dis. 2018;63(1):35–52.

    Article  PubMed  Google Scholar 

  61. Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ischemia activate processing of amyloid precursor protein: impact of vascular dysfunction in the pathogenesis of Alzheimer's disease. J Neurochem. 2017;140(4):536–49.

    Article  CAS  PubMed  Google Scholar 

  62. Grammas P, Samany PG, Thirumangalakudi L. Thrombin and inflammatory proteins are elevated in Alzheimer's disease microvessels: implications for disease pathogenesis. J Alzheimers Dis. 2006;9(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  63. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71.

    Article  CAS  PubMed  Google Scholar 

  64. Chakraborty A, de Wit NM, van der Flier WM, de Vries HE. The blood brain barrier in Alzheimer’s disease. Vasc Pharmacol. 2017;89:12–8.

    Article  CAS  Google Scholar 

  65. Skillback T, Delsing L, Synnergren J, Mattsson N, Janelidze S, Nagga K, et al. CSF/serum albumin ratio in dementias: a cross-sectional study on 1861 patients. Neurobiol Aging. 2017;59:1–9.

    Article  PubMed  CAS  Google Scholar 

  66. Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84.

    Article  CAS  PubMed  Google Scholar 

  67. Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J Cereb Blood Flow Metab. 2016;36(1):216–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tomimoto H, Akiguchi I, Suenaga T, Nishimura M, Wakita H, Nakamura S, et al. Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer's disease patients. Stroke. 1996;27(11):2069–74.

    Article  CAS  PubMed  Google Scholar 

  69. Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res. 2017;120(3):439–48.

    Article  CAS  PubMed  Google Scholar 

  70. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, et al. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet (London, England). 2012;379(9834):2364–72.

    Article  CAS  Google Scholar 

  71. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  72. Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52(2):437–53.

    PubMed  PubMed Central  Google Scholar 

  73. De Silva DA, Fink JN, Christensen S, Ebinger M, Bladin C, Levi CR, et al. Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke. 2009;40(8):2872–4.

    Article  PubMed  CAS  Google Scholar 

  74. Soares BP, Tong E, Hom J, Cheng SC, Bredno J, Boussel L, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke. 2010;41(1):e34–40.

    Article  PubMed  Google Scholar 

  75. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15(9):1031–7.

    Article  CAS  PubMed  Google Scholar 

  76. Lee J, Gursoy-Ozdemir Y, Fu B, Boas DA, Dalkara T. Optical coherence tomography imaging of capillary reperfusion after ischemic stroke. Appl Opt. 2016;55(33):9526–31.

    Article  PubMed  PubMed Central  Google Scholar 

  77. del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. 1991;22(10):1276–83.

    Article  PubMed  Google Scholar 

  78. Liu S, Connor J, Peterson S, Shuttleworth CW, Liu KJ. Direct visualization of trapped erythrocytes in rat brain after focal ischemia and reperfusion. J Cereb Blood Flow Metab. 2002;22(10):1222–30.

    Article  PubMed  Google Scholar 

  79. Garcia JH, Liu KF, Yoshida Y, Chen S, Lian J. Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol. 1994;145(3):728–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vates GE, Takano T, Zlokovic B, Nedergaard M. Pericyte constriction after stroke: the jury is still out. Nat Med. 2010;16(9):959. author reply 60

    Google Scholar 

  81. Damisah EC, Hill RA, Tong L, Murray KN, Grutzendler J. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci. 2017;20(7):1023–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ng FC, Coulton B, Chambers B, Thijs V. Persistently elevated microvascular resistance Postrecanalization. Stroke. 2018;49(10):2512–5.

    Article  PubMed  Google Scholar 

  83. Goldberg I, Auriel E, Russell D, Korczyn AD. Microembolism, silent brain infarcts and dementia. J Neurol Sci. 2012;322(1–2):250–3.

    Article  CAS  PubMed  Google Scholar 

  84. Vermeer SE, Longstreth WT Jr, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol. 2007;6(7):611–9.

    Article  PubMed  Google Scholar 

  85. Wang Z, van Veluw SJ, Wong A, Liu W, Shi L, Yang J, et al. Risk factors and cognitive relevance of cortical cerebral microinfarcts in patients with ischemic stroke or transient ischemic attack. Stroke. 2016;47(10):2450–5.

    Article  PubMed  Google Scholar 

  86. Fisher MJ. Brain regulation of thrombosis and hemostasis: from theory to practice. Stroke. 2013;44(11):3275–85.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lam CK, Yoo T, Hiner B, Liu Z, Grutzendler J. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature. 2010;465(7297):478–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grutzendler J, Murikinati S, Hiner B, Ji L, Lam CK, Yoo T, et al. Angiophagy prevents early embolus washout but recanalizes microvessels through embolus extravasation. Sci Transl Med. 2014;6(226):226ra31.

    Article  PubMed  Google Scholar 

  89. Reeson P, Choi K, Brown CE. VEGF signaling regulates the fate of obstructed capillaries in mouse cortex. elife. 2018;7:e33670.

    Article  PubMed  PubMed Central  Google Scholar 

  90. van der Wijk A-E, Lachkar N, de Vos J, Grootemaat AE, van der Wel NN, Hordijk PL, Bakker ENTP, vanBavel E. Extravasation of microspheres in a rat model of silent brain infarcts. Stroke. 2019;50(6):1590–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik N. T. P. Bakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Wijk, AE., VanBavel, E., Bakker, E.N.T.P. (2020). The Cerebral Microcirculation. In: Agabiti-Rosei, E., Heagerty, A.M., Rizzoni, D. (eds) Microcirculation in Cardiovascular Diseases. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-47801-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47801-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47800-1

  • Online ISBN: 978-3-030-47801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics