Skip to main content

Challenges to Develop and Design Ultra-high Temperature Piezoelectric Accelerometers

  • Conference paper
  • First Online:
Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7

Abstract

Piezoelectric accelerometer sensors are widely used for testing and monitoring vibrations in automotive, aerospace or industrial applications. The temperature limitation of most piezoelectric accelerometers is below 500 °C, which meets the requirements of typical vibration measurement applications. However, in extreme cases such as engine monitoring, measurements are required up to 900 °C, where the ultra-high temperature accelerometers are needed. This research work focuses on the development of ultra-high temperature piezoelectric accelerometers using bismuth layer-structured ferroelectric piezoceramics as sensing elements. The challenges to develop these materials and create the corresponding ultra-high temperature accelerometers will be discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, S., Yu, F.: Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)

    Article  Google Scholar 

  2. Yan, H., Zhang, H., Ubic, R., Reece, M.J., Liu, J., Shen, Z., Zhang, Z.: A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9. Adv. Mater. 17, 1261–1265 (2005)

    Article  Google Scholar 

  3. Yan, H., Zhang, H., Reece, M.J., Dong, X.: Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics. Appl. Phys. Lett. 87, 1–4 (2005)

    Google Scholar 

  4. Zhang, H.: Accelerometer based on high Tc piezoelectric ceramics. In: 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, pp. 754–756 (2007)

    Google Scholar 

  5. Chen, H., Shen, B., Xu, J., Kong, L., Zhai, J.: Correlation between grain sizes and electrical properties of CaBi2Nb2O9 piezoelectric ceramics. J. Am. Ceram. Soc. 95, 3514–3518 (2012)

    Article  Google Scholar 

  6. Zhang, X., Yan, H., Reece, M.J.: Effect of a site substitution on the properties of CaBi2Nb 2O9 ferroelectric ceramics. J. Am. Ceram. Soc. 91, 2928–2932 (2008)

    Article  Google Scholar 

  7. Wang, C.-M., Wang, J.-F., Zhang, S., Shrout, T.R.: Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics. Phys. Status Solidi. 3, 49–51 (2009)

    Article  Google Scholar 

  8. Chen, H., Zhai, J.: Enhancing piezoelectric performance of CaBi2Nb2O 9 ceramics through microstructure control. J. Electron. Mater. 41, 2238–2242 (2012)

    Article  Google Scholar 

  9. Tian, X., Qu, S., Ma, H., Pei, Z., Wang, B.: Effect of grain size on dielectric and piezoelectric properties of bismuth layer structure CaBi2Nb2O9 ceramics. J. Mater. Sci. Mater. Electron. 27, 13309–13313 (2016)

    Article  Google Scholar 

  10. Wang, C.M., Zhang, S., Wang, J.F., Zhao, M.L., Wang, C.L.: Electromechanical properties of calcium bismuth niobate (CaBi2Nb2O9) ceramics at elevated temperature. Mater. Chem. Phys. 118, 21–24 (2009)

    Article  Google Scholar 

  11. Peng, Z., Chen, Q., Wang, Y., Xin, D., Xian, D., Zhu, J.: Enhancement of piezoelectric properties of (LiCePr)-multidoped CaBi2Nb2O9high temperature ceramics. Mater. Lett. 107, 14–16 (2013)

    Article  Google Scholar 

  12. Chen, J., Yuan, J., Bao, S., Wu, Y., Liu, G., Chen, Q., Xiao, D., Zhu, J.: Effects of (Li, Ce, Y) co-substitution on the properties of CaBi2Nb2O9 high temperature piezoceramics. Ceram. Int. 43, 5002–5006 (2017)

    Article  Google Scholar 

  13. Wang, Y., Wu, J., Peng, Z., Chen, Q., Xin, D., Xiao, D., Zhu, J.: Piezoelectric properties and thermal stability of Ca0.92(Li,Ce)0.04Bi2Nb2−x W x O9 high-temperature ceramics. Appl. Phys. A. 119, 337–341 (2015)

    Article  Google Scholar 

  14. Tinbo, B.: Effect of A site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. J. Am. Ceram. Soc. 2792, 2792 (2010)

    Google Scholar 

  15. Zeng, X., Cao, F., Peng, Z., Xing, X.: Crystal structure and electrical properties of (Li, Ce, Nd)-multidoped CaBi2Nb2O9 high temperature ceramics. Ceram. Int. 44, 3069–3076 (2018)

    Article  Google Scholar 

  16. Liu, G., Wu, C., Chen, Y., Liang, D., Wang, B., Wu, J., Chen, Q.: Enhanced ferroelectricity of CaBi2Nb2O9-based high-temperature piezoceramics by pseudo-tetragonal distortion. Ceram. Int. 44, 5880–5885 (2018)

    Article  Google Scholar 

  17. Xing, X., Cao, F., Peng, Z., Xiang, Y.: The effects of oxygen vacancies on the electrical properties of W, Ti doped CaBi2Nb2O9 piezoceramics. Curr. Appl. Phys. 18, 1149–1157 (2018)

    Article  Google Scholar 

  18. Xing, X., Cao, F., Peng, Z., Xiang, Y.: Electrical properties and sintering characteristics of zirconium doped CaBi2Nb2O9 ceramics. Ceram. Int. 44(14), 17326–17332 (2018)

    Article  Google Scholar 

  19. Suárez, D.Y., Reaney, I.M., Lee, W.E.: Relation between tolerance factor and Tc in Aurivillius compounds. J. Mater. Res. 16, 3139–3149 (2001)

    Article  Google Scholar 

  20. Shrout, T.R., Zhang, S.: Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 185 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support from Innovate UK on Knowledge Transfer Partnerships NO. KTP10651; the support from Loughborough Materials Characterisation Centre on materials characterization work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shu, C., Ovenden, N., Saremi-Yarahmadi, S., Vaidhyanathan, B. (2021). Challenges to Develop and Design Ultra-high Temperature Piezoelectric Accelerometers. In: Walber, C., Walter, P., Seidlitz, S. (eds) Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-47713-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47713-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47712-7

  • Online ISBN: 978-3-030-47713-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics