Skip to main content

Spiral-Based Model for Software Architecture in Bio-image Analysis: A Case Study in RSV Cell Infection

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2020)

Abstract

The advancement in biological and medical image acquisitions has allowed the development of numerous investigations in different fields supported by image analysis, from cell to physiological level. The complexity in the treatment of data, generated by image analysis, requires a structured methodology for software development. In this paper we proposed a framework to develop a software solution with a Service-Oriented Architecture (SOA) applied to the analysis of biological images. The framework is completed with a novel image analysis methodology that would help researchers to achieve better results in their image analysis projects. We evaluate our proposal in a scientific project related to cell image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng, H.: Bioimage informatics: a new area of engineering biology. Bioinformatics 24, 1827–1836 (2008). https://doi.org/10.1093/bioinformatics/btn346

  2. Yao, J., Zhang, J., Chen, S., Wang, C., Levy, D., Liu, Q.: A mobile cloud with trusted data provenance services for bioinformatics research. In: Liu, Q., Bai, Q., Giugni, S., Williamson, D., Taylor, J. (eds.) Provenance and Data Management in eScience. SCI, vol. 426, pp. 109–128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-29931-5_5

    Chapter  Google Scholar 

  3. Gamarra, M., Zurek, E., Nieto, W., Jimeno, M., Sierra, D.: A service-oriented architecture for bioinformatics: an application in cell image analysis. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 569, pp. 724–734. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56535-4_71

    Chapter  Google Scholar 

  4. Zorrilla, M., García-Saiz, D.: A service oriented architecture to provide data mining services for non-expert data miners. Decis. Support Syst. 55, 399–411 (2013). https://doi.org/10.1016/j.dss.2012.05.045

    Article  Google Scholar 

  5. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22930834. Accessed 11 Sept 2017

  6. Abramoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004). http://dspace.library.uu.nl/handle/1874/204900. Accessed 12 Apr 2016

  7. Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., et al.: Engineering and algorithm design for an image processing API: a technical report on ITK–the Insight Toolkit. Stud. Health Technol. Inform. 85, 586–592 (2002)

    Google Scholar 

  8. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., et al.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006). https://doi.org/10.1186/gb-2006-7-10-r100

  9. Pelet, S., Dechant, R., Lee, S.S., van Drogen, F., Peter, M.: An integrated image analysis platform to quantify signal transduction in single cells. Integr. Biol. (Camb). 4, 1274–1282 (2012). https://doi.org/10.1039/c2ib20139a

  10. Kvilekval, K., Fedorov, D., Obara, B., Singh, A., Manjunath, B.S.: Bisque: a platform for bioimage analysis and management. Bioinformatics 26, 544–552 (2010). https://doi.org/10.1093/bioinformatics/btp699

  11. Ahmed, Z., Zeeshan, S., Dandekar, T.: Developing sustainable software solutions for bioinformatics by the “Butterfly” paradigm. F1000Research 3, 71 (2014). https://doi.org/10.12688/f1000research.3681.2

  12. Sharma, A., Vidyapeeth, J.R.N.R.: Application of AOP methodology in eclipse-AJDT environment for developing bioinformatics software (n.d.). http://www.ijcaonline.org/icwet/number15/SE243.pdf. Accessed 11 Sept 2017

  13. Al-Otaibi, N.M., Noaman, A.Y.: Biological data integration using SOA. Int. J. Comput. Electr. Autom. Control Inf. Eng. 5, 74–79 (2011)

    Google Scholar 

  14. Castillo, J.C., Almeida, F., Blanco, V., Ramírez, M.C.: Web services based platform for the cell counting problem. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8805, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14325-5_8

    Chapter  Google Scholar 

  15. Tosi, S., Bardia, L., Filgueira, M., Calon, A., Colombelli, J.: LOBSTER: an environment to design bioimage analysis workflows for large and complex fluorescence microscopy data. Bioimage Inform. 36(8), 2634–2635 (2019). https://doi.org/10.1093/bioinformatics/btz945

  16. Boehm, B.W.: A spiral model of software development and enhancement. Comput. (Long. Beach. Calif.). 21, 61–72 (1988). https://doi.org/10.1109/2.59

  17. Moeslund, T.B.: Image Acquisition, pp. 7–24 (2012). https://doi.org/10.1007/978-1-4471-2503-7_2

  18. Gonzalez, R.C.: Digital Image Processing. Pearson Education, Upper Saddle River (2009)

    Google Scholar 

  19. Oliveira, R.B., Papa, J.P., Pereira, A.S., Tavares, J.M.R.S.: Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput. Appl., 1–24 (2016). https://doi.org/10.1007/s00521-016-2482-6

  20. CMMI® for Development, Version 1.3—CMMI Institute. CMMI Institute (2010)

    Google Scholar 

  21. González-Castaño, D.M., Pena, J., Gómez, F., Gago-Arias, A., González-Castaño, F.J., Rodríguez-Silva, D.A., et al.: eIMRT: a web platform for the verification and optimization of radiation treatment plans. J. Appl. Clin. Med. Phys. 10, 2998 (2009)

    Google Scholar 

  22. Xiang, X.: Service-oriented architecture for integration of bioinformatic data and applications. University of Notre Dame (2007)

    Google Scholar 

  23. Gamarra, M., Zurek, E., Escalante, H.J., Hurtado, L., San-Juan-Vergara, H.: Split and merge watershed: a two-step method for cell segmentation in fluorescence microscopy images. Biomed. Signal Process Control (53) (2019). https://doi.org/10.1016/j.bspc.2019.101575

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Gamarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gamarra, M., Zurek, E., Nieto, W., Jimeno, M., Sierra, D. (2020). Spiral-Based Model for Software Architecture in Bio-image Analysis: A Case Study in RSV Cell Infection. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science(), vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47679-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47678-6

  • Online ISBN: 978-3-030-47679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics