Advertisement

Dynamic Ensemble Selection – Application to Classification of Cutting Tools

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12133)

Abstract

In order to improve pattern recognition performance of an individual classifier an ensemble of classifiers is used. One of the phases of creating the multiple classifier system is the selection of base classifiers which are used as the original set of classifiers. In this paper we propose the algorithm of the dynamic ensemble selection that uses median and quartile of correctly classified objects. The resulting values are used to define the decision schemes, which are used in the selection of the base classifiers process. The proposed algorithm has been verified on a real dataset regarding the classification of cutting tools. The obtained results clearly indicate that the proposed algorithm improves the classification measure. The improvement concerns the comparison with the ensemble of classifiers method without the selection.

Keywords

Ensemble of classifiers Ensemble selection Cutting tool 

Notes

Acknowledgment

This work was supported by the statutory funds of the Department of Systems and Computer Networks, Wroclaw University of Science and Technology and Institute of Computer Science, Kazimierz Wielki University.

References

  1. 1.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)zbMATHGoogle Scholar
  2. 2.
    Ulaş, A., Semerci, M., Yıldız, O.T., Alpaydın, E.: Incremental construction of classifier and discriminant ensembles. Inf. Sci. 179(9), 1298–1318 (2009)CrossRefGoogle Scholar
  3. 3.
    Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 8(4), e1249 (2018)Google Scholar
  4. 4.
    Kuncheva, L.I.: Combining Pattern Classifiers. Wiley, New York (2014).  https://doi.org/10.1002/9781118914564zbMATHCrossRefGoogle Scholar
  5. 5.
    Britto Jr., A.S., Sabourin, R., Oliveira, L.E.: Dynamic selection of classifiers–a comprehensive review. Pattern Recogn. 47(11), 3665–3680 (2014)CrossRefGoogle Scholar
  6. 6.
    Tan, C., Ranjit, S.: An expert carbide cutting tools selection system for CNC lathe machine. Int. Rev. Mech. Eng. 6(7), 1402–1405 (2012)Google Scholar
  7. 7.
    Igari, S., Tanaka, F., Onosato, M.: Customization of a micro process planning system for an actual machine tool based on updating a machining database and generating a database oriented planning algorithm. In: ASME/ISCIE 2012 International Symposium on Flexible Automation, pp. 35–42. American Society of Mechanical Engineers Digital Collection (2012)Google Scholar
  8. 8.
    Rojek, I.: Classifier models in intelligent CAPP systems. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AINSC 2009, vol. 59, pp. 311–319. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00563-3_32CrossRefGoogle Scholar
  9. 9.
    Rojek, I.: Technological process planning by the use of neural networks. AI EDAM 31(1), 1–15 (2017)Google Scholar
  10. 10.
    Dey, A., Shaikh, S.H., Saeed, K., Chaki, N.: Modified majority voting algorithm towards creating reference image for binarization. In: Kumar Kundu, M., Mohapatra, D.P., Konar, A., Chakraborty, A. (eds.) Advanced Computing, Networking and Informatics - Volume 1. SIST, vol. 27, pp. 221–227. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07353-8_26CrossRefGoogle Scholar
  11. 11.
    Ruta, D., Gabrys, B.: Classifier selection for majority voting. Inf. Fus. 6(1), 63–81 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Przybyła-Kasperek, M., Wakulicz-Deja, A.: Comparison of fusion methods from the abstract level and the rank level in a dispersed decision-making system. Int. J. Gen Syst 46(4), 386–413 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bloch, I.: Information combination operators for data fusion: a comparative review with classification. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 26(1), 52–67 (1996)CrossRefGoogle Scholar
  14. 14.
    Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)CrossRefGoogle Scholar
  15. 15.
    Burduk, R., Baczyńska, P.: Ensemble of classifiers with modification of confidence values. In: Saeed, K., Homenda, W. (eds.) CISIM 2016. LNCS, vol. 9842, pp. 473–480. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45378-1_42CrossRefGoogle Scholar
  16. 16.
    Baczyńska, P., Burduk, R.: Classifier selection uses decision profiles in binary classification task. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. AISC, vol. 389, pp. 3–10. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-23814-2_1CrossRefGoogle Scholar
  17. 17.
    Black, J.T., Kohser, R.A.: DeGarmo’s Materials and Processes in Manufacturing. Wiley, Chichester (2017)Google Scholar
  18. 18.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Mana. 45(4), 427–437 (2009).  https://doi.org/10.1016/j.ipm.2009.03.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of ElectronicWroclaw University of Science and TechnologyWroclawPoland
  2. 2.Institute of Computer ScienceKazimierz Wielki UniversityBydgoszczPoland

Personalised recommendations