Machine Learning Approach Applied to the Prevalence Analysis of ADHD Symptoms in Young Adults of Barranquilla, Colombia

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12133)


Disorder Attention Deficit/Hyperactivity Disorder, or ADHD, is recognized as one of the pathologies of high prevalence in children and adolescents from the global environment population; this disorder generates visible symptoms usually diminish with the passage of time in adulthood, however they remain concealed by demonstrations damnifican personal stability and human development apt. This article shows the results of the research aimed at determining the prevalence of symptoms of attention deficit hyperactivity disorder in Young Adults University of Barranquilla and its Metropolitan Area. The sample of 1600 young adults between 18 and 25 years, which has been estimated at 95% confidence level and a margin of error of 2.44%. The information was acquired through the application of exploratory instruments symptoms of attention deficit hyperactivity disorder. With the application of the algorithm different machine learning algorithms such as: Bagging, MultiBoostAB, DecisionStump, LogitBoost, FT, J48Graft, a high performance in the Bagging algorithm could be identified with the following results in quality metrics: Accuracy 91.67%, Precision 94.12%, Recall 88.89% and F-measure 91.43%.


ADHD disorder Prevalence of symptoms Pathology Hyperactivity Impulsivity Classification techniques 


  1. 1.
    Velázquez, J., García, M.: Trastorno por déficit de la atención e hiperactividad de la infancia a la vida adulta. Red de Revistas Científicas de América Latina, el Caribe, España y Portugal 9(4), 176–181 (2007)Google Scholar
  2. 2.
    Ramos-Quiroga, J., Chalita, P., Vidal, R., Bosch, R., Palomar, G., et al.: Diagnóstico y tratamiento del trastorno por déficit de atención/hiperactividad en adultos. Rev. Neurol. 54(1), 105–115 (2000)CrossRefGoogle Scholar
  3. 3.
    Cabanyes, J., García, D.: Trastorno por déficit de atención e hiperactividad en el adulto: perspectivas actuales. Psiquiatría Biol. 13(3), 86–94 (2006)CrossRefGoogle Scholar
  4. 4.
    Faraone, S.V., Biederman, J., Spencer, T., Wilens, T., Seidman, L.J., et al.: Attention-deficit/hyperactivity disorder in adults: an overview. Biol. Psychiatry 48(1), 9–20 (2000)CrossRefGoogle Scholar
  5. 5.
    DANE: Archivo Nacional de Datos ANDA (2014). Citado 20 Marzo 2016
  6. 6.
    Pimienta-Lastra, R.: Encuestas probabilísticas vs. no probabilísticas. Polít. Cult. 13, 263–276 (2000)Google Scholar
  7. 7.
    León-Jacobus, A., Valle-Cordoba, S., Florez-Niño, Y.: Diseño y validación piloto del inventario exploratorio de síntomas de TDAH (IES-TDAH) ajustado al DSM-V en jóvenes universitarios (Trabajo de Grado) (2007)Google Scholar
  8. 8.
    Adler, L., Kessler, R., Spencer, T.: Instrucciones para contestar la Escala de Auto-reporte de síntomas de TDAH en Adultos (ASRS-V1.1) (2003). Citado 15 Feb 2016
  9. 9.
    Barceló-Martínez, E., León-Jacobus, A., Cortes-Peña, O., Valle-Córdoba, S., Flórez-Niño, Y.: Validación del inventario exploratorio de síntomas de TDAH (IES-TDAH) ajustado al DSM-V. Rev. Mex. Neu. 17(1), 1–113 (2016)Google Scholar
  10. 10.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). Scholar
  11. 11.
    Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pang, J., Huang, Q., Jiang, S.: Multiple instance boost using graph embedding based decision stump for pedestrian detection. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 541–552. Springer, Heidelberg (2008). Scholar
  13. 13.
    Bhargava, N., Sharma, G., Bhargava, R., Mathuria, M.: Decision tree analysis on J48 algorithm for data mining. Proc. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6) (2013)Google Scholar
  14. 14.
    Ariza-Colpas, P., et al.: Enkephalon - technological platform to support the diagnosis of Alzheimer’s disease through the analysis of resonance images using data mining techniques. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2019. LNCS, vol. 11656, pp. 211–220. Springer, Cham (2019). Scholar
  15. 15.
    Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240, June 2006Google Scholar
  16. 16.
    Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation (2011)Google Scholar
  17. 17.
    Ye, K., Anton Feenstra, K., Heringa, J., IJzerman, A.P., Marchiori, E.: Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting. Bioinformatics 24(1), 18–25 (2008)CrossRefGoogle Scholar
  18. 18.
    Yih, W.T., Goodman, J., Hulten, G.: Learning at low false positive rates. In: CEAS, July 2006Google Scholar
  19. 19.
    Lane, T., Brodley, C.E.: An application of machine learning to anomaly detection. In: Proceedings of the 20th National Information Systems Security Conference, Baltimore, USA, vol. 377, pp. 366–380, October 1997Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad MetropolitanaBarranquillaColombia
  2. 2.Universidad de la Costa, CUCBarranquillaColombia
  3. 3.Instituto Colombiano de NeuropedagogiaBarranquillaColombia
  4. 4.Universidad del NorteBarranquillaColombia
  5. 5.Universidad Simón BolivarBarranquillaColombia

Personalised recommendations