Skip to main content

Inputs, Outputs, and Multisensory Processing

  • Chapter
  • First Online:
Neuroscience for Psychologists
  • 1455 Accesses

Abstract

Humans, like other animals, have sensory structures allowing them to transduce diverse physical stimuli into signals that the nervous system can process. Sensory pathways, characteristic for each type of “sense,” process unisensory stimuli at various stages before they feed into multimodal and “higher” structures implementing eventually processes such as spatial orientation, object recognition, maintenance of homeostasis, or specific motivation. Those pathways, typically involving subcortical and cortical parts, establish a hierarchical structure. Hierarchical processing involves not only feed forward but also parallel and feedback processing so that progressively more complex properties of the signals are represented. Complex representations of the environmental and bodily signals are only partly accessible to our subjective experience. In this chapter, we introduce the processing pathways and hierarchies of the main sensory systems. Further, we put special emphasis on how sensory representations are integrated into coherent multisensory representations of our environment. Multisensory perception not only offers specific advantages over unisensory perception but also entails specific difficulties leading to multisensory illusions. We describe psychophysical and neural principles of how the nervous system generates our multisensory perception. Finally, we give an outlook on possible roles that multisensory perceptions may play in mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pheromones are chemical messengers carrying signals from one living system to the other as first described and investigated by Butenandt for airborne messengers enabling communication in some butterflies.

  2. 2.

    Humor is also a dimension of humanity, but science (even humanities) has never taken it very seriously….

  3. 3.

    Prostaglandins are signaling lipids with para- or autocrine functions.

  4. 4.

    In 7 Chap. 2, the cellular ionic gradient of K+ was discussed and its relatively high intracellular concentration. Any destruction (necrosis) of cells will lead to elevated K+ concentrations in the extracellular fluid.

  5. 5.

    Rigorously there are three types: the heart is counted as a special kind of muscle, too.

  6. 6.

    Some of the axons of the motor cortex “relay” first at the diencephalic red nucleus before connecting to the spinal cord.

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14(3):257–262

    Article  Google Scholar 

  • Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7(11):1190–1192. nn1333 [pii]. https://doi.org/10.1038/nn1333

    Article  Google Scholar 

  • Bizley JK, Nodal FR, Bajo VM, Nelken I, King AJ (2007) Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cereb Cortex (New York, NY: 1991) 17(9):2172–2189. bhl128 [pii]. https://doi.org/10.1093/cercor/bhl128

    Article  Google Scholar 

  • Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391(6669):756. https://doi.org/10.1038/35784

    Article  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296. S0896-6273(01)00198-2 [pii]

    Article  Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46(2):369–384

    Article  Google Scholar 

  • Contreras M, Ceric F, Torrealba F (2007) Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 318(5850):655–658. https://doi.org/10.1126/science.1145590

    Article  Google Scholar 

  • Dahl CD, Logothetis NK, Kayser C (2009) Spatial organization of multisensory responses in temporal association cortex. J Neurosci 29(38):11924–11932. 29/38/11924 [pii]. https://doi.org/10.1523/JNEUROSCI.3437-09.2009

    Article  Google Scholar 

  • de Gelder B, Vroomen J, Annen L, Masthof E, Hodiamont P (2003) Audio-visual integration in schizophrenia. Schizophr Res 59(2–3):211–218. [pii]. https://doi.org/10.1016/s0920-9964(01)00344-9

    Article  Google Scholar 

  • Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79(1–2):1–37

    Article  Google Scholar 

  • Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept Psychophys 66(8):1388–1404

    Article  Google Scholar 

  • Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57(1):11–23. S0896-6273(07)01019-7 [pii]. https://doi.org/10.1016/j.neuron.2007.12.013

    Article  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136

    Article  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433

    Article  Google Scholar 

  • Ernst MO, Bulthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4):162–169. S1364661304000385 [pii]. https://doi.org/10.1016/j.tics.2004.02.002

    Article  Google Scholar 

  • Fetsch CR, Deangelis GC, Angelaki DE (2013) Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat Rev Neurosci 14(6):429–442. nrn3503 [pii]. https://doi.org/10.1038/nrn3503

    Article  Google Scholar 

  • Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE (2012) Neural correlates of reliability-based cue weighting during multisensory integration. Nat Neurosci 15(1):146–154. nn.2983 [pii]. https://doi.org/10.1038/nn.2983

    Article  Google Scholar 

  • Foss-Feig JH, Kwakye LD, Cascio CJ, Burnette CP, Kadivar H, Stone WL, Wallace MT (2010) An extended multisensory temporal binding window in autism spectrum disorders. Exp Brain Res 203(2):381–389

    Article  Google Scholar 

  • Gepshtein S, Burge J, Ernst MO, Banks MS (2005) The combination of vision and touch depends on spatial proximity. J Vis 5(11):1013–1023. 5/11/7 [pii]. https://doi.org/10.1167/5.11.7

    Article  Google Scholar 

  • Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10(6):278–285. S1364-6613(06)00104-5 [pii]. https://doi.org/10.1016/j.tics.2006.04.008

    Article  Google Scholar 

  • Haans et al (2012) Individual differences in the rubber-hand illusion: Predicting self-reports of people’s personal experiences. Acta Psychol 141:169–177

    Article  Google Scholar 

  • Hickok G, & Poeppel D (2000) Towards a functional neuroanatomy of speech perception. Trends Cogn Sci 4(4):131–138. https://doi.org/10.1016/s1364-6613(00)01463-7

  • Hickok G, & Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2):67–99. https://doi.org/10.1016/j.cognition.2003.10.011

  • Hickok G, & Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8(5):393–402. https://doi.org/10.1038/nrn2113

  • Hickok G (2012) The cortical organization of speech processing: feedback control and predictive coding the context of a dual-stream model. J Commun Disord 45(6):393–402. https://doi.org/10.1016/j.jcomdis.2012.06.004

    Article  Google Scholar 

  • Jackson C (1953) Visual factors in auditory localization. Q J Exp Psychol 5(2):52–65

    Article  Google Scholar 

  • Johnson J, Clydesdale F (1982) Perceived sweetness and redness in colored sucrose solutions. J Food Sci 47(3):747–752

    Article  Google Scholar 

  • Jousmaki V, Hari R (1998) Parchment-skin illusion: sound-biased touch. Curr Biol 8(6):R190. [pii]. https://doi.org/10.1016/s0960-9822(98)70120-4

    Article  Google Scholar 

  • Kaplan RA, Enticott PG, Hohwy J, Castle DJ, Rossell SL (2014) Is body dysmorphic disorder associated with abnormal bodily self-awareness? A study using the rubber hand illusion. PLoS One 9(6):e99981

    Article  Google Scholar 

  • Kayser C, Petkov CI, Augath M, Logothetis NK (2007) Functional imaging reveals visual modulation of specific fields in auditory cortex. J Neurosci 27(8):1824–1835. 27/8/1824 [pii]. https://doi.org/10.1523/JNEUROSCI.4737-06.2007

    Article  Google Scholar 

  • Kim T, Kerschensteiner D (2017) Inhibitory control of feature selectivity in an object motion sensitive circuit of the retina. Cell Rep 19(7):1343–1350

    Article  Google Scholar 

  • Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27(12):712–719

    Article  Google Scholar 

  • Kording KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multisensory perception. PLoS One 2(9):e943

    Article  Google Scholar 

  • Lenggenhager B, Tadi T, Metzinger T, Blanke O (2007) Video ergo sum: manipulating bodily self-consciousness. Science 317(5841):1096–1099. 317/5841/1096 [pii]. https://doi.org/10.1126/science.1143439

    Article  Google Scholar 

  • Lewis R, Noppeney U (2010) Audiovisual synchrony improves motion discrimination via enhanced connectivity between early visual and auditory areas. J Neurosci 30(37):12329–12339. https://doi.org/10.1523/JNEUROSCI.5745-09.201030/37/12329. [pii]

    Article  Google Scholar 

  • Maoiléidigh DÓ, Ricci AJ (2019) A bundle of mechanisms: inner-ear hair-cell mechanotransduction. Trends Neurosci 42:221

    Article  Google Scholar 

  • Massaro DW, Cohen MM, Smeele PM (1996) Perception of asynchronous and conflicting visual and auditory speech. J Acoust Soc Am 100(3):1777–1786

    Article  Google Scholar 

  • McDonald JJ, Teder-Salejarvi WA, Hillyard SA (2000) Involuntary orienting to sound improves visual perception. Nature 407(6806):906–908. https://doi.org/10.1038/35038085

    Article  Google Scholar 

  • McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264(5588):746–748

    Article  Google Scholar 

  • Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7(10):3215–3229

    Article  Google Scholar 

  • Meredith MA, Stein BE (1983) Interactions among converging sensory inputs in the superior colliculus. Science 221(4608):389–391

    Article  Google Scholar 

  • Meredith MA, Stein BE (1986a) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365(2):350–354

    Article  Google Scholar 

  • Meredith MA, Stein BE (1986b) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56(3):640–662

    Article  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417

    Article  Google Scholar 

  • Mishra J, Martinez A, Sejnowski TJ, Hillyard SA (2007) Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion. J Neurosci 27(15):4120–4131

    Article  Google Scholar 

  • Morein-Zamir S, Soto-Faraco S, Kingstone A (2003) Auditory capture of vision: examining temporal ventriloquism. Brain Res Cogn Brain Res 17(1):154–163. https://doi.org/10.1016/s0926-6410(03)00089-2. [pii]

    Article  Google Scholar 

  • O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5(11):1203

    Article  Google Scholar 

  • Radeau M, Bertelson P (1977) Adaptation to auditory-visual discordance and ventriloquism in semirealistic situations. Percept Psychophys 22(2):137–146

    Article  Google Scholar 

  • Rauschecker JP (2018) Where, when, and how: are they all sensorimotor? Towards a unified view of the dorsal pathway in vision and audition. Cortex; a journal devoted to the study of the nervous system and behavior 98:262–268

    Article  Google Scholar 

  • Rensselaer Av (1955). Fun with ventriloquism. New York: Garden City Books.

    Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3(2):131–141

    Article  Google Scholar 

  • Rock I, Victor J (1964) Vision and touch: an experimentally created conflict between the two senses. Science 143(3606):594–596

    Article  Google Scholar 

  • Rohe T, Ehlis A-C, Noppeney U (2019) The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nat Commun 10(1):1907. https://doi.org/10.1038/s41467-019-09664-2

    Article  Google Scholar 

  • Rohe T, Noppeney U (2015a) Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLoS Biol 13(2):e1002073

    Article  Google Scholar 

  • Rohe T, Noppeney U (2015b) Sensory reliability shapes perceptual inference via two mechanisms. J Vis 15(5):1–16

    Article  Google Scholar 

  • Rohe T, Noppeney U (2016) Distinct computational principles govern multisensory integration in primary sensory and association cortices. Curr Biol 26(4):509–514

    Article  Google Scholar 

  • Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P (2010) Dynamics of active sensing and perceptual selection. Curr Opin Neurobiol 20(2):172–176. https://doi.org/10.1016/j.conb.2010.02.010

    Article  Google Scholar 

  • Sekuler R (1997) Sound alters visual motion perception. Nature 385(6614):308

    Article  Google Scholar 

  • Shams L, Beierholm UR (2010) Causal inference in perception. Trends Cogn Sci 14(9):425–432

    Article  Google Scholar 

  • Shams L, Iwaki S, Chawla A, Bhattacharya J (2005) Early modulation of visual cortex by sound: an MEG study. Neurosci Lett 378(2):76–81

    Article  Google Scholar 

  • Shams L, Kamitani Y, Shimojo S (2000) What you see is what you hear. Nature 408(6814):788. https://doi.org/10.1038/35048669

    Article  Google Scholar 

  • Shipley T (1964) Auditory flutter-driving of visual flicker. Science 145(3638):1328–1330

    Article  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, Cambridge, MA

    Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9(4):255–266. nrn2331 [pii]. https://doi.org/10.1038/nrn2331

    Article  Google Scholar 

  • Tian B, Kuśmierek P, Rauschecker JP (2013) Analogues of simple and complex cells in rhesus monkey auditory cortex. Proc Natl Acad Sci 110(19):7892–7897

    Article  Google Scholar 

  • Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292(5515):290–293. 292/5515/290 [pii]. https://doi.org/10.1126/science.1058911

    Article  Google Scholar 

  • Usrey WM, Alitto HJ (2015) Visual functions of the thalamus. Ann Rev Vision Sci 1:351–371

    Article  Google Scholar 

  • Wallace MT, Roberson GE, Hairston WD, Stein BE, Vaughan JW, Schirillo JA (2004) Unifying multisensory signals across time and space. Exp Brain Res 158(2):252–258. https://doi.org/10.1007/s00221-004-1899-9

    Article  Google Scholar 

  • Warren DH, Cleaves WT (1971) Visual-proprioceptive interaction under large amounts of conflict. J Exp Psychol 90(2):206–214

    Article  Google Scholar 

  • Welch RB, Warren DH (1980) Immediate perceptual response to intersensory discrepancy. Psychol Bull 88(3):638–667

    Article  Google Scholar 

  • Wilson M (2002) Six views of embodied cognition. Psychon Bull Rev 9(4):625–636

    Article  Google Scholar 

  • Wong HY (2017) On proprioception in action: multimodality versus deafferentation. Mind Lang 32(3):259–282

    Article  Google Scholar 

  • Zampini M, Spence C (2004) The role of auditory cues in modulating the perceived crispness and staleness of potato chips. J Sens Stud 19(5):347–363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Rohe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rohe, T., Zeise, M.L. (2021). Inputs, Outputs, and Multisensory Processing. In: Zeise, M.L. (eds) Neuroscience for Psychologists. Springer, Cham. https://doi.org/10.1007/978-3-030-47645-8_6

Download citation

Publish with us

Policies and ethics