Skip to main content

Multiscale CFD Simulation for DTFB Scale-Up

  • Chapter
  • First Online:
Diameter-Transformed Fluidized Bed

Part of the book series: Particle Technology Series ((POTS,volume 27))

Abstract

This chapter introduces an energy-minimization multiscale-based computational fluid dynamics approach and its application to the simulation of industrial-scale diameter-transformed fluidized bed (DTFB) reactors. The effects of geometrical and operating factors are numerically investigated to search for the optimal design of DTFB reactors for the maximizing iso-paraffins (MIP) process. The simulation results indicate that the geometrical factors including the configurations of the exit tube, feeding tube, and distributor do not strongly affect the macroscopic flow state in the expanded second section, but are important to maintain a steady transition between the two neighboring sections. The simulation accurately predicts the flow regime transition, in particular, the choking phenomenon, in a series of curves relating the solids flux and solids inventory at specified operating gas velocities. The simulation results can be used to determine the optimal operating conditions and diameter ratio of the expanded second reaction zone to the first reaction zone. A reactive simulation of a 120-Mt/a DTFB reactor for the MIP process further reveals the variation of velocities, temperature, and product species with the reactor height. Results and challenges to the scale-up of this reactor are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., Kwauk, M.: Paticle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method. Metallurgical Industry Press, Beijing (1994)

    Google Scholar 

  2. Yang, N., Wang, W., Ge, W., Li, J.: CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem. Eng. J. 96, 71–80 (2003)

    Article  CAS  Google Scholar 

  3. Wang, W., Li, J.: Simulation of gas–solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level. Chem. Eng. Sci. 62(1–2), 208–231 (2007)

    Article  CAS  Google Scholar 

  4. Lu, B., Wang, W., Li, J.: Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows. Chem. Eng. Sci. 64(15), 3437–3447 (2009)

    Article  CAS  Google Scholar 

  5. Lu, B., Niu, Y., Chen, F., Ahmad, N., Wang, W., Li, J.: Energy-minimization multiscale based mesoscale modeling and applications in gas-fluidized catalytic reactors. Rev. Chem. Eng. 35(8), 879–915 (2019)

    Article  CAS  Google Scholar 

  6. Ge, W., Wang, L., Xu, J., Chen, F., Zhou, G., Lu, L., Chang, Q., Li, J.: Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application. Rev. Chem. Eng. 33(6), 551–623 (2017)

    Article  Google Scholar 

  7. Tsuji, Y., Tanaka, T., Yonemura, S.: Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model). Powder Technol. 95(3), 254–264 (1998)

    Article  CAS  Google Scholar 

  8. Deen, N.G., Van Sint Annaland, M., Van der Hoef, M.A., Kuipers, J.A.M.: Review of discrete particle modeling of fluidized beds. Chem. Eng. Sci. 62(1–2), 28–44 (2007)

    Article  CAS  Google Scholar 

  9. Andrews, M.J., O’Rourke, P.J.: The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int. J. Multiphase Flow. 22(2), 379–402 (1996)

    Article  CAS  Google Scholar 

  10. Snider, D.M.: An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J. Comput. Phys. 170(2), 523–549 (2001)

    Article  CAS  Google Scholar 

  11. Anderson, T.B., Jackson, R.: A fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6(4), 527–539 (1967)

    Article  CAS  Google Scholar 

  12. Soo, S.L.: Fluid Dynamics of Multiphase Systems. Blaisdell Publishing Co., Waltham (1967)

    Google Scholar 

  13. Drew, D.A., Segel, L.A.: Averaged equations for two-phase flows. Stud. Appl. Math. 50(3), 205–231 (1971)

    Google Scholar 

  14. Ishii, M.: Thermo-Fluid Dynamic Theory of Two-phase Flow. Eyrolles, Paris (1975)

    Google Scholar 

  15. Liu, D.-Y.: Fluid dynamics of two-phase systems (In Chinese). Higher Education Press (1993)

    Google Scholar 

  16. Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, Boston (1994)

    Google Scholar 

  17. Ansys, I.: ANSYS Fluent Theory Guide (release 15.0). http://www.ansys.com (2013)

    Google Scholar 

  18. Wen, C.Y., Yu, Y.H.: Mechanics of fluidization. Chem. Eng. Symp. Ser. 62(62), 100–111 (1966)

    CAS  Google Scholar 

  19. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Process. 48, 89–94 (1952)

    CAS  Google Scholar 

  20. Gidaspow, D.: Hydrodynamics of fluidization and heat transfer: supercomputer modeling. Appl. Mech. Rev. 39, 1–23 (1986)

    Article  Google Scholar 

  21. Wang, J., Ge, W., Li, J.: Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chem. Eng. Sci. 63(6), 1553–1571 (2008)

    Article  CAS  Google Scholar 

  22. Hong, K., Shi, Z., Wang, W., Li, J.: A structure-dependent multi-fluid model (SFM) for heterogeneous gas–solid flow. Chem. Eng. Sci. 99, 191–202 (2013)

    Article  CAS  Google Scholar 

  23. Agrawal, K., Loezos, P.N., Syamlal, M., Sundaresan, S.: The role of mesoscale structures in rapid gas-solid flows. J. Fluid Mech. 445, 151–185 (2001)

    Article  Google Scholar 

  24. Andrews IV, A.T., Loezos, P.N., Sundaresan, S.: Coarse-grid simulation of gas-particle flows in vertical risers. Ind. Eng. Chem. Res. 44(16), 6022–6037 (2005)

    Article  CAS  Google Scholar 

  25. Igci, Y., Andrews, A.T., Sundaresan, S., Pannala, S., O’Brien, T.: Filtered two-fluid models for fluidized gas-particle suspensions. AICHE J. 54(6), 1431–1448 (2008)

    Article  CAS  Google Scholar 

  26. Igci, Y., Pannala, S., Benyahia, S., Sundaresan, S.: Validation Studies on Filtered Model Equations for Gas-Particle Flows in Risers. Ind. Eng. Chem. Res. 51(4), 2094–2103 (2012)

    Article  CAS  Google Scholar 

  27. Ozarkar, S.S., Yan, X., Wang, S., Milioli, C.C., Milioli, F.E., Sundaresan, S.: Validation of filtered two-fluid models for gas–particle flows against experimental data from bubbling fluidized bed. Powder Technol. 284, 159–169 (2015)

    Article  CAS  Google Scholar 

  28. Cloete, S., Johansen, S.T., Amini, S.: Evaluation of a filtered model for the simulation of large scale bubbling and turbulent fluidized beds. Powder Technol. 235, 91–102 (2013)

    Article  CAS  Google Scholar 

  29. Schneiderbauer, S., Puttinger, S., Pirker, S.: Comparative analysis of subgrid drag modifications for dense gas-particle flows in bubbling fluidized beds. AICHE J. 59(11), 4077–4099 (2013)

    Article  CAS  Google Scholar 

  30. Li, T., Dietiker, J.-F., Rogers, W., Panday, R., Gopalan, B., Breault, G.: Investigation of CO2 capture using solid sorbents in a fluidized bed reactor: cold flow hydrodynamics. Powder Technol. 301, 1130–1143 (2016)

    Article  CAS  Google Scholar 

  31. Zhu, L.-T., Xie, L., Xiao, J., Luo, Z.-H.: Filtered model for the cold-model gas–solid flow in a large-scale MTO fluidized bed reactor. Chem. Eng. Sci. 143, 369–383 (2016)

    Article  CAS  Google Scholar 

  32. Xu, Z., Lai, C., Marcy, P.W., Dietiker, J.-F., Li, T., Sarkar, A., Sun, X.: Predicting the performance uncertainty of a 1-MW pilot-scale carbon capture system after hierarchical laboratory-scale calibration and validation. Powder Technol. 312, 58–66 (2017)

    Article  CAS  Google Scholar 

  33. Li, J., Kwauk, M.: Exploring complex systems in chemical engineering--the multi-scale methodology. Chem. Eng. Sci. 58(3–6), 521–535 (2003)

    Article  CAS  Google Scholar 

  34. Ge, W., Li, J.: Physical mapping of fluidization regimes—the EMMS approach. Chem. Eng. Sci. 57(18), 3993–4004 (2002)

    Article  CAS  Google Scholar 

  35. Jiradilok, V., Gidaspow, D., Damronglerd, S., Koves, W.J., Mostofi, R.: Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. Chem. Eng. Sci. 61(17), 5544–5559 (2006)

    Article  CAS  Google Scholar 

  36. Lu, B., Wang, W., Li, J., Wang, X., Gao, S., Lu, W., Xu, Y., Long, J.: Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chem. Eng. Sci. 62(18–20), 5487–5494 (2007)

    Article  CAS  Google Scholar 

  37. Shah, M.T., Utikar, R.P., Tade, M.O., Pareek, V.K.: Hydrodynamics of an FCC riser using energy minimization multiscale drag model. Chem. Eng. J. 168(2), 812–821 (2011)

    Article  CAS  Google Scholar 

  38. Liu, S.-S., Xiao, W.-D.: Evaluation of the flow behavior in a large-scale polydisperse particle fluidized system by an energy minimization multiscale-eulerian combined model. Ind. Eng. Chem. Res. 53(36), 14113–14126 (2014)

    Article  CAS  Google Scholar 

  39. Shah, M.T., Utikar, R.P., Pareek, V.K.: CFD study: Effect of pulsating flow on gas–solid hydrodynamics in FCC riser. Particuology. 31, 25–34 (2017)

    Article  CAS  Google Scholar 

  40. Zhang, D.Z., VanderHeyden, W.B.: The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows. Int. J. Multiphase Flow. 28(5), 805–822 (2002)

    Article  CAS  Google Scholar 

  41. Matsen, J.M.: Mechanisms of choking and entrainment. Powder Technol. 32, 21–33 (1982)

    Article  Google Scholar 

  42. Li, J., Kuipers, J.A.M.: On the origin of heterogeneous structure in dense gas–solid flows. Chem. Eng. Sci. 60(5), 1251–1265 (2005)

    Article  CAS  Google Scholar 

  43. Lu, B., Wang, W., Li, J.: Eulerian simulation of gas–solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model. Chem. Eng. Sci. 66(20), 4624–4635 (2011)

    Article  CAS  Google Scholar 

  44. Zhang, N., Lu, B., Wang, W., Li, J.: Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed. Particuology. 6(6), 529–539 (2008)

    Article  CAS  Google Scholar 

  45. Wang, W., Lu, B., Zhang, N., Shi, Z., Li, J.: A review of multiscale CFD for gas-solid CFB modeling. Int. J. Multiphase Flow. 36(2), 109–118 (2010)

    Article  CAS  Google Scholar 

  46. Ge, W., Wang, W., Yang, N., Li, J., Kwauk, M., Chen, F., Chen, J., Fang, X., Guo, L., He, X., Liu, X., Liu, Y., Lu, B., Wang, J., Wang, J., Wang, L., Wang, X., Xiong, Q., Xu, M., Deng, L., Han, Y., Hou, C., Hua, L., Huang, W., Li, B., Li, C., Li, F., Ren, Y., Xu, J., Zhang, N., Zhang, Y., Zhou, G., Zhou, G.: Meso-scale oriented simulation towards virtual process engineering (VPE)—The EMMS Paradigm. Chem. Eng. Sci. 66(19), 4426–4458 (2011)

    Article  CAS  Google Scholar 

  47. Zhou, W., Zhao, C.S., Duan, L.B., Chen, X.P., Liang, C.: Two-dimensional computational fluid dynamics simulation of nitrogen and sulfur oxides emissions in a circulating fluidized bed combustor. Chem. Eng. J. 173(2), 564–573 (2011)

    Article  CAS  Google Scholar 

  48. Lu, B., Zhang, N., Wang, W., Li, J., Chiu, J.H., Kang, S.G.: 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler. AICHE J. 59(4), 1108–1117 (2013)

    Article  CAS  Google Scholar 

  49. Qiu, X., Wang, L., Yang, N., Li, J.: A simplified two-fluid model coupled with EMMS drag for gas-solid flows. Powder Technol. 314, 299–314 (2017)

    Article  CAS  Google Scholar 

  50. Wang, X., Gao, S., Xu, Y., Zhang, J.: Gas-solids flow patterns in a novel dual-loop FCC riser. Powder Technol. 152, 90–99 (2005)

    Article  CAS  Google Scholar 

  51. Bi, H.T., Grace, J.R.: Flow regime diagrams for gas-solid fluidization and upward transport. Int. J. Multiphase Flow. 21(6), 1229–1236 (1995)

    Article  CAS  Google Scholar 

  52. Grace, J.R.: Reflections on turbulent fluidization and dense suspension upflow. Powder Technol. 113(3), 242–248 (2000)

    Article  CAS  Google Scholar 

  53. Sun, Z., Zhu, J.: A consolidated flow regime map of upward gas fluidization. AICHE J. 65(9), e16672 (2019)

    Article  CAS  Google Scholar 

  54. Li, J.: Modeling, in advances in chemical engineering. In: Kwauk, M. (ed.). pp. 147–201. Academic 1994

    Google Scholar 

  55. Wang, W., Lu, B., Li, J.H.: Choking and flow regime transitions: simulation by a multi-scale CFD approach. Chem. Eng. Sci. 62(3), 814–819 (2007)

    Article  CAS  Google Scholar 

  56. Lu B.: EMMS-based meso-scale model and its application in simulating gas-solid two-phase flows. Doctoral Thesis, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China (2009)

    Google Scholar 

  57. Chen, S., Fan, Y., Yan, Z., Wang, W., Liu, X., Lu, C.: CFD optimization of feedstock injection angle in a FCC riser. Chem. Eng. Sci. 153, 58–74 (2016)

    Article  CAS  Google Scholar 

  58. Chen, S., Fan, Y., Yan, Z., Wang, W., Lu, C.: CFD simulation of gas–solid two-phase flow and mixing in a FCC riser with feedstock injection. Powder Technol. 287, 29–42 (2016)

    Article  CAS  Google Scholar 

  59. Gunn, D.J.: Transfer of heat or mass to particles in fixed and fluidised beds. Int. J. Heat Mass Transf. 21(4), 467–476 (1978)

    Article  Google Scholar 

  60. Lu, B., Cheng, C., Lu, W., Wang, W., Xu, Y.: Numerical simulation of reaction process in MIP riser based on multi-scale model. CIESC Journal (in Chinese). 64(6), 1983–1992 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bona Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, B., Wang, W. (2020). Multiscale CFD Simulation for DTFB Scale-Up. In: Diameter-Transformed Fluidized Bed. Particle Technology Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-47583-3_4

Download citation

Publish with us

Policies and ethics