Skip to main content

Open Circular Hole in a Finite Plate Under Tension Treated by Airy Stress Function Method

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 134))

Abstract

Open circular holes are an essential design feature and are often placed in narrowplates for reasons of limited space raising high stress concentrations. To create lightweight optimal structures precise analysis tools are vital, which can be based on analytical means providing efficient computation. That is why focus of the present paper is the determination of the stress field for the isotropic finite-width open-hole problem under uniform tension using the Airy stress function. This is performed by taking the stress field of corresponding infinite domain problem and supplementing it with auxiliary functions enabling to continuously model traction-free edges. The results are eventually validated against Finite Element analyses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker W (1993) Complex method for the elliptical hole in an unsymmetric laminate. Archive of Applied Mechanics 63:159–169

    Google Scholar 

  • Camanho P, Lambert M (2006) A design methodology for mechanically fastened joints in laminated composite materials. Composites Science and Technology 66:3004–3020, https://doi.org/10.1016/j.compscitech.2006.02.017

  • Camanho P, Ercin G, Catalanotti G, Mahdi S, Linde P (2012) A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Composites Part A: Applied Science and Manufacturing 43(8):1219 – 1225, DOI https://doi.org/10.1016/j.compositesa.2012.03.004

  • Catalanotti G, Camanho P (2013) A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates. Composites Science and Technology 76:69–76, https://doi.org/10.1016/j.compscitech.2012.12.009

  • Cornetti P, Pugno N, Carpinteri A, Taylor D (2006) Finite fracture mechanics: A coupled stress and energy failure criterion. Engineering Fracture Mechanics 73(14):2021 – 2033

    Google Scholar 

  • Filon LNG (1903) On an approximate solution for the bending of a beam of rectangular cross-section under any system of lond, with special reference to points of concentrated or discontinuous loading. Philosophical Transactions of the Royal Society of London, Series A 201:63–155, https://doi.org/10.1098/rsta.1903.0014

  • HufenbachW, KrollL(1999) Stress analysis of notched anisotropic finite plates under mechanical and hygrothermal loads. Archive of Applied Mechanics 69(3):145– 159

    Google Scholar 

  • Hufenbach W, Grüber B, Gottwald R, Lepper M, Zhou B (2010) Analytical and experimental analysis of stress concentration in notched multilayered composites with finite outer boundaries. Mechanics of Composite Materials 46(5):531–538

    Google Scholar 

  • Hufenbach W, Grüber B, Lepper M, G R, Zhou B (2013) An analytical method for the determination of stress and strain concentrations in textile-reinforced gf/Tension 329 composites with elliptical cutout and a finite outer boundary and its numerical verification. Archive of Applied Mechanics 83:125–135

    Google Scholar 

  • Kirsch G (1898) Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereins deutscher Ingenieure 42:797–807

    Google Scholar 

  • Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. European Journal of Mechanics - A/Solids 21(1):61 – 72

    Google Scholar 

  • Lekhnitskii S (1968) Anisotropic plates. Gordon and Breach Science Publishers

    Google Scholar 

  • Lin CC, Ko CC (1988) Stress and strength analysis of finite composite laminates with elliptical holes. Journal of Composite Materials 22(4):373–385

    Google Scholar 

  • Michell JH (1899) On the direct determination of stress in an elastic solid with application to the theory of plates. Proceedings of the London Mathematical Society 31:100–124

    Google Scholar 

  • Muskhelishvili N (1963) Some basic problems of the mathematical theory of elasticity. Noordhoff, Groningen 17404

    Google Scholar 

  • Neuber H (1933) Elastisch-strenge Lösungen zur Kerbwirkung bei Scheiben und Umdrehungskörpern. ZAMM 13:439–442

    Google Scholar 

  • Neuber H (1934) Zur Theorie der Kerbwirkung bei Biegung und Schub. Ingenieur- Archiv 5(3):238–244

    Google Scholar 

  • Neuber H (2013) Kerbspannungslehre: Theorie der Spannungskonzentration. Genaue Berechnung der Festigkeit. Springer-Verlag

    Google Scholar 

  • Nguyen-Hoang M, Becker W (2020) Tension failure analysis for bolted joints using a closed-form stress solution. Composite Structures p 111931

    Google Scholar 

  • Ogonowski J (1980) Analytical study of finite geometry plates with stress concentrations. In: 21st Structures, Structural Dynamics, and Materials Conference, p 778

    Google Scholar 

  • Peterson R, Wahl A (1936) Two and three dimensional cases of stress concentration and comparison with fatigue tests. Trans ASME 58:A15

    Google Scholar 

  • Pilkey WD, Pilkey DF (2008) Peterson’s stress concentration factors. John Wiley & Sons

    Google Scholar 

  • Rosendahl P, Weißgraeber P, Stein N, Becker W (2017) Asymmetric crack onset at open-holes under tensile and in-plane bending loading. International Journal of Solids and Structures 113-114:10 – 23

    Google Scholar 

  • Sadd MH (2005) Elasticity: Theory, Applications, and Numerics - Second Edition. Elsevier Butterworth-Heinemann

    Google Scholar 

  • Savin G (1961) Stress Concentration Around Holes. Pergamon Press

    Google Scholar 

  • Sevenois R, Koussios S (2014) Analytic methods for stress analysis of twodimensional flat anisotropic plates with notches: An overview. Applied Mechanics Reviews 66:060,802

    Google Scholar 

  • Tan SC (1988) Finite-width correction factors for anisotropic plate containing a central opening. Journal of Composite Materials 22(11):1080–1097

    Google Scholar 

  • Tan SC, Kim RY (1990) Strain and stress concentrations in composite laminates containing a hole. Experimental Mechanics 30(4):345–351

    Google Scholar 

  • Timoshenko S, Goodier JN (1951) Theory of Elasticity. McGraw-Hill Book Company, Inc

    Google Scholar 

  • Ukadgaonker V, Rao D (2000a) A general solution for stress resultants and moments around holes in unsymmetric laminates. Composite Structures 49(1):27 – 39

    Google Scholar 

  • Ukadgaonker V, Rao D (2000b) A general solution for stresses around holes in symmetric laminates under inplane loading. Composite Structures 49(3):339 – 354

    Google Scholar 

  • Weißgraeber P, Leguillon D, BeckerW(2015) A review of finite fracture mechanics: Crack initiation at singular and non-singular stress-raisers. Archive of Applied Mechanics 86:375–401

    Google Scholar 

  • Whitney JM, Nuismer RJ (1974) Stress fracture criteria for laminated composites containing stress concentrations. Journal of Composite Materials 8:253–265, https://doi.org/10.1177/002199837400800303

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen-Hoang Minh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minh, NH., Becker, W. (2020). Open Circular Hole in a Finite Plate Under Tension Treated by Airy Stress Function Method. In: Altenbach, H., Chinchaladze, N., Kienzler, R., Müller, W. (eds) Analysis of Shells, Plates, and Beams. Advanced Structured Materials, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-47491-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47491-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47490-4

  • Online ISBN: 978-3-030-47491-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics