Skip to main content
  • 3513 Accesses

Abstract

This chapter is devoted to the application of various design of experiment strategies. First, some fundamental questions are addressed in simulation studies, such as “In what order should measurements be carried out?” and “Should corners of the input space be measured?” Then, HILOMOT-DoE, an active learning strategy based on the HILOMOT algorithm, is applied to a structural health monitoring application. In a second application example, HILOMOT-DoE is utilized for efficient combustion engine measurement at a test stand. With this approach, half of the measurement time could be saved compared to conventional DoE strategies, still achieving comparable model quality. Finally, the excitation signal generator proposed in Chap. 19 is very successfully applied to a common rail fuel injection system. The benefits of such a generator-based DoE approach are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Variable-length_intake_manifold

  2. 2.

    This is a special kind of optimal block design that is beyond the scope of this book. It was offered by the software and achieved good results in the past.

  3. 3.

    Because the amount of data is much higher for the global DoE than for each local DoE, the degree of the polynomial is chosen higher as well.

  4. 4.

    Many thanks to my research assistant Tim O. Heinz and my external Ph.D. student Mark Schillinger, Bosch Engineering, for providing me with the above application example.

References

  1. Balageas, D., Fritzen, C.-P., Güemes, A.: Structural health monitoring, vol. 493. Wiley Online Library (2006)

    Google Scholar 

  2. Belz, J., Bamberger, K., Nelles, O.: Order of experimentation for metamodeling tasks. In: International Joint Conference on Neural Networks (IJCNN), pp. 4843–4849, Vancouver, Canada (2016)

    Google Scholar 

  3. Belz, J., Nelles, O.: Function generator application: shall corners be measured? In: Proceedings 25. Workshop Computational Intelligence, Dortmund. KIT Scientific Publishing (2015)

    Google Scholar 

  4. Belz, J., Nelles, O.: Proposal for a function generator and extrapolation analysis. In: 2015 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), pp. 1–6, Madrid, Spain. IEEE (2015)

    Google Scholar 

  5. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)

    Google Scholar 

  6. Cai, X., Qiu, H., Gao, L., Shao, X.: Metamodeling for high dimensional design problems by multi-fidelity simulations. Struct. Multidiscip. Optim. 56(1), 151–166 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, R.-B., Hsieh, D.-N., Hung, Y., Wang, W.: Optimizing Latin hypercube designs by particle swarm. Stat. Comput. 23(5), 663–676 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, V.C.P., Tsui, K.-L., Barton, R.R., Meckesheimer, M.: A review on design, modeling and applications of computer experiments. IIE Trans. 38(4), 273–291 (2006)

    Article  Google Scholar 

  9. Chiang, M.M.-T., Mirkin, B.: Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads. J. Classif. 27(1), 3–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciuffo, B., Casas, J., Montanino, M., Perarnau, J., Punzo, V.: Gaussian process metamodels for sensitivity analysis of traffic simulation models: case study of AIMSUN mesoscopic model. Transp. Res. Rec. J. Transp. Res. Board 2390, 87–98 (2013)

    Article  Google Scholar 

  11. Correa, A.A., Grima, P., Tort-Martorell, X.: Experimentation order in factorial designs: new findings. J. Appl. Stat. 39(7), 1577–1591 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ebert, T., Fischer, T., Belz, J., Heinz, T.O., Kampmann, G., Nelles, O.: Extended deterministic local search algorithm for maximin Latin hypercube designs. In: 2015 IEEE Symposium Series on Computational Intelligence: IEEE Symposium on Computational Intelligence in Control and Automation (2015 IEEE CICA), Cape Town, South Africa (2015)

    Google Scholar 

  13. Fang, K.-T., Li, R.: Uniform design for computer experiments and its optimal properties. Int. J. Mater. Prod. Technol. 25(1–3), 198–210 (2005)

    ADS  Google Scholar 

  14. Ford, I., Titterington, D.M., Kitsos, C.P.: Recent advances in nonlinear experimental design. Technometrics 31(1), 49–60x (1989)

    Google Scholar 

  15. Freeman, J.A.S.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedman, J.H.: Multivariate adaptive regression splines (with discussion). Ann. Stat. 19(1), 1–141 (1991)

    MATH  Google Scholar 

  17. Grosso, A., Jamali, A., Locatelli, M.: Finding maximin Latin hypercube designs by iterated local search heuristics. Eur. J. Oper. Res. 197(2), 541–547 (2009)

    Article  MATH  Google Scholar 

  18. Gutjahr, T., Kleinegräber, H., Ulmer, H., Kruse, T., Eckstein, C.: New approaches for modeling dynamic engine behavior with gaussian processes. In: Röpke, K. (ed.) Design of Experiments (DoE) in Engine Development. Expert Verlag (2013)

    Google Scholar 

  19. Hartmann, B.: Lokale Modellnetze zur Identifikation und Versuchsplanung nichtlinearer Systeme. Ph.D. thesis, Universitätsbibliothek der Universität Siegen (2014)

    Google Scholar 

  20. Hartmann, B., Baumann, W., Nelles, O.: Axes-oblique partitioning of local model networks for engine calibration. In: Design of Experiments (DoE) in Engine Development, pp. 92–106, Berlin, Germany. Expert Verlag (2013)

    Google Scholar 

  21. Hartmann, B., Ebert, T., Nelles, O.: Model-based design of experiments based on local model networks for nonlinear processes with low noise levels. In: American Control Conference (ACC), pp. 5306–5311, 29 2011–July 1 2011 (2011)

    Google Scholar 

  22. Hartmann, B., Moll, J., Nelles, O., Fritzen, C.-P.: Modeling of nonlinear wave velocity characteristics in a structural health monitoring system. In: IEEE International Conference on Control Applications (CCA), Yokohama, Japan (2010)

    Google Scholar 

  23. Hartmann, B., Moll, J., Nelles, O., Fritzen, C.-P.: Hierarchical local model trees for design of experiments in the framework of ultrasonic structural health monitoring. In: IEEE International Conference on Control Applications (CCA), pp. 1163–1170. IEEE (2011)

    Google Scholar 

  24. Hartmann, B., Nelles, O.: Adaptive test planning for the calibration of combustion engines – methodology. In: Design of Experiments (DoE) in Engine Development, pp. 1–16, Berlin, Germany. Expert Verlag (2013)

    Google Scholar 

  25. Hastie, T., Tibshirani, R.: Generalized Additive Models. Wiley Online Library (1990)

    Google Scholar 

  26. Heinz, T.O., Nelles, O.: Vergleich von anregungssignalen für nichtlineare identifikationsaufgaben. In: Hoffman, F., Hüllermeier, E., Mikut, R. (eds.) Proceedings 26. Workshop Computational Intelligence, pp. 139–158. KIT Scientific Publishing (2016)

    Google Scholar 

  27. Heinz, T.O., Schillinger, M., Hartmann, B., Nelles, O.: Excitation signal design for nonlinear dynamic systems. In: Röpke, K., Gühmann, C. (eds.) International Calibration Conference – Automotive Data Analytics, Methods, DoE, pp. 191–208. expertVerlag (2017)

    Google Scholar 

  28. Hilow, H.: Comparison among run order algorithms for sequential factorial experiments. Comput. Stat. Data Anal. 58, 397–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jin, R., Chen, W., Sudjianto, A.: On sequential sampling for global metamodeling in engineering design. In: ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 539–548. American Society of Mechanical Engineers (2002)

    Google Scholar 

  30. Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Inference 134(1), 268–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26(2), 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  32. Johnson, R.T., Montgomery, D.C., Jones, B., Fowler, J.W.: Comparing designs for computer simulation experiments. In: Proceedings of the 40th Conference on Winter Simulation, pp. 463–470. Winter Simulation Conference (2008)

    Google Scholar 

  33. Kajero, O.T., Chen, T., Yao, Y., Chuang, Y.-C., Shan Hill Wong, D.: Meta-modelling in chemical process system engineering. J. Taiwan Inst. Chem. Eng. (2016)

    Google Scholar 

  34. Klein, P., Kirschbaum, F., Hartmann, B., Bogachik, J., Nelles, O.: Adaptive test planning for the calibration of combustion engines – application. In: Design of Experiments (DoE) in Engine Development, pp. 17–30, Berlin, Germany. Expert Verlag (2013)

    Google Scholar 

  35. McKay, D.M., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  36. Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman & Hall/CRC, London (2005)

    Book  MATH  Google Scholar 

  37. Moll, J., Hartmann, B., Chaaban, R., Fritzen, C.-P., Nelles, O.: A novel online learning approach for ultrasonic imaging applied to a non-convex structure. Technical report, Department of Mechanical Engineering (2011)

    Google Scholar 

  38. Moll, J.: Strukturdiagnose mit Ultraschallwellen durch Verwendung von piezoelektrischen Sensoren und Aktoren. Ph.D. thesis, Univ. of Siegen (2011)

    Google Scholar 

  39. Moll, J., Schulte, R.T., Hartmann, B., Fritzen, C.-P., Nelles, O.: Multi-site damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system. Smart Mater. Struct. 19(4), 045022 (2010)

    Article  ADS  Google Scholar 

  40. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons, Hoboken (2008)

    Google Scholar 

  41. Nelles, O.: Nonlinear System Identification. Springer, Berlin, Germany (2001)

    Book  MATH  Google Scholar 

  42. Nelles, O.: Axes-oblique partitioning strategies for local model networks. In: IEEE International Symposium on Intelligent Control, pp. 2378–2383, Munich, Germany (2006)

    Google Scholar 

  43. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1), 51–70 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pronzato, L., Müller, W.G.: Design of computer experiments: space filling and beyond. Stat. Comput. 22(3), 681–701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. MIT Press, Cambridge, MA (2006)

    MATH  Google Scholar 

  46. Bosch GmbH, R. (ed.): Ottomotor-Management, 3rd edn. Friedr. Vieweg & Sohn Verlag (2005)

    Google Scholar 

  47. Schillinger, M., Hartmann, B., Skalecki, P., Meister, M., Nguyen-Tuong, D., Nelles, O.: Safe active learning and safe bayesian optimization for tuning a PI-controller. In: IFAC World Congress, pp. 5967–5972 (2017)

    Google Scholar 

  48. Schillinger, M., Mourat, K., Hartmann, B., Eckstein, C., Jacob, M., Kloppenburg, E., Nelles, O.: Modern online doe methods for calibration – constraint modeling, continuous boundary estimation, and active learning. In: Röpke, K., Gühmann, C. (eds.) Automotive Data Analytics, Methods, DoE. Expert Verlag (2017)

    Google Scholar 

  49. Schillinger, M., Ortelt, B., Hartmann, B., Schreiter, J., Meister, M., Nguyen-Tuong, D., Nelles, O.: Safe active learning of a high pressure fuel supply system. In: 9th EUROSIM Congress on Modelling and Simulation, pp. 286–292 (2016)

    Google Scholar 

  50. Singhee, A., Rutenbar, R.A.: Why Quasi-Monte Carlo is better than Monte Carlo or Latin hypercube sampling for statistical circuit analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11), 1763–1776 (2010)

    Article  Google Scholar 

  51. Sobol’, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967)

    Google Scholar 

  52. Tambouratzis, T.: Counter-clustering for training pattern selection. Comput. J. 43(3), 177–190 (2000)

    Article  MATH  Google Scholar 

  53. Tietze, N.: Model-Based Calibration of Engine Control Units Using Gaussian Process Regression. Ph.D. thesis, Technische Universität (2015)

    Google Scholar 

  54. Tietze, N., Konigorski, U., Fleck, C., Nguyen-Tuong, D.: Model-based calibration of engine controller using automated transient design of experiment. In: 14th Stuttgart International Symposium, Wiesbaden. Springer Fachmedien (2014)

    Google Scholar 

  55. Wan, H.-P., Ren, W.-X.: Parameter selection in finite-element-model updating by global sensitivity analysis using gaussian process metamodel. J. Struct. Eng. 141(6), 04014164 (2014)

    Article  Google Scholar 

  56. Wang, G.G.: Adaptive response surface method using inherited Latin hypercube design points. J. Mech. Des. 125(2), 210–220 (2003)

    Article  Google Scholar 

  57. Wang, G.G., Dong, Z., Aitchison, P.: Adaptive response surface method – a global optimization scheme for approximation-based design problems. Eng. Optim. 33(6), 707–734 (2001)

    Article  Google Scholar 

  58. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Nelles, O. (2020). Design of Experiments. In: Nonlinear System Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-47439-3_26

Download citation

Publish with us

Policies and ethics