Skip to main content

Nonlinear Dynamic System Identification

  • Chapter
Nonlinear System Identification

Abstract

This chapter addresses many fundamental issues arising when transitioning from nonlinear static to nonlinear dynamic models. Many aspects are very general in nature and independent of the specific model architecture. They are analyzed here. The two competing concepts of external and internal dynamics are contrasted. It is explained how equation and output errors are traditionally treated in the neural network terminology as series-parallel and parallel model structures. The additional difficulties feedback causes are discussed and how they are dealt with in learning as well. A large section discusses the much-neglected topic of suitable excitation signals for nonlinear dynamic processes and new ideas for their analysis. Finally, a new signal generator is proposed that is capable of generating very good excitation signals, which is much more flexible and in contrast to the conventional approach of postulating a specific parameterized signal type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This analysis is carried out for the external dynamics approach because it allows us to gain some important insights about the desirable properties of the excitation signals. Although with the internal dynamics approach the one-step prediction function is not explicitly approximated, this analysis based on information content considerations is also valid for this class of approaches.

References

  1. Baumann, W., Schaum, S., Roepke, K., Knaak, M.: Excitation signals for nonlinear dynamic modeling of combustion engines. In: Proceedings of the 17th World Congress, The International Federation of Automatic Control, Seoul, Korea (2008)

    Google Scholar 

  2. Billings, S.A., Voon, W.S.F.: Correlation based validity tests for nonlinear models. Int. J. Control 44(1), 235–244 (1986)

    Article  MATH  Google Scholar 

  3. Billings, S.A., Zhu, Q.M.: Nonlinear model validation using correlation tests. Int. J. Control 60(6), 1107–1120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Box, G.E.P., Meyer, R.D.: An analysis for unreplicated fractional factorials. Technometrics 28(1), 11–18 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Billings, S.A.: Representations of nonlinear systems: the NARMAX model. Int. J. Control 49(3), 1013–1032 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chikkula, Y., Lee, J.H.: Input sequence design for parametric identification of nonlinear systems. In: American Control Conference (ACC), vol. 5, pp. 3037–3041, Albuquerque, USA (1997)

    Google Scholar 

  7. Deflorian, M., et al.: Versuchsplanung und Methoden zur Identifikation zeitkontinuierlicher Zustandsraummodelle am Beispiel des Verbrennungsmotors. Ph.D. thesis, Technische Universität München (2011)

    Google Scholar 

  8. Dotsenko, V.I., Faradzhev, R.G., Chakartisvhili, G.S.: Properties of maximum length sequences with p-levels. Automatika i Telemechanika 8, 189–194 (1971)

    Google Scholar 

  9. Ebert, T., Fischer, T., Belz, J., Heinz, T.O., Kampmann, G., Nelles, O.: Extended deterministic local search algorithm for maximin Latin hypercube designs. In: 2015 IEEE Symposium Series on Computational Intelligence: IEEE Symposium on Computational Intelligence in Control and Automation (2015 IEEE CICA), Cape Town, South Africa (2015)

    Google Scholar 

  10. Eykhoff, P.: System Identification. John Wiley & Sons, London (1974)

    MATH  Google Scholar 

  11. Fischer, M., Nelles, O., Isermann, R.: Exploiting prior knowledge in fuzzy model identification of a heat exchanger. In: IFAC Symposium on Artificial Intelligence in Real-Time Control (AIRTC), pp. 445–450, Kuala Lumpur, Malaysia (1997)

    Google Scholar 

  12. Haber, R., Keviczky, L.: Identification of ‘linear’ systems having state-dependent parameters. Int. J. Syst. Sci. 16(7), 869–884 (1985)

    Article  MATH  Google Scholar 

  13. Häck, M., Köhne, M.: Internal Model Control mit neuronalen Netzen zur Regelung eines Prozessanalysators. Automatisierungstechnik 45(1) (1997)

    Google Scholar 

  14. Hametner, C., Stadlbauer, M., Deregnaucourt, M., Jakubek, S., Winsel, T.: Optimal experiment design based on local model networks and multilayer perceptron networks. Eng. Appl. Artif. Intell. 26(1), 251–261 (2013)

    Article  Google Scholar 

  15. Haykin, S.: Neural Networks. A Comprehensive Foundation. Macmillan, New York (1994)

    Google Scholar 

  16. He, X., Asada, H.: A new method for identifying orders of input-output models for nonlinear dynamic systems. In: American Control Conference (ACC), pp. 2520–2524, San Francisco, USA (1993)

    Google Scholar 

  17. Heinz, T.O., Nelles, O.: Efficient pole optimization of nonlinear Laguerre filter models. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 1–7. IEEE (2016)

    Google Scholar 

  18. Heinz, T.O., Nelles, O.: Vergleich von anregungssignalen für nichtlineare identifikationsaufgaben. In: Hoffman, F., Hüllermeier, E., Mikut, R. (eds.) Proceedings 26. Workshop Computational Intelligence, pp. 139–158. KIT Scientific Publishing (2016)

    Google Scholar 

  19. Heinz, T.O., Nelles, O.: Iterative excitation signal design for nonlinear dynamic black-box models. Proc. Comput. Sci. 112, 1054–1061 (2017)

    Article  Google Scholar 

  20. Heinz, T.O., Nelles, O.: Excitation signal design for nonlinear dynamic systems with multiple inputs – a data distribution approach. at-Automatisierungstechnik 66(9), 714–724 (2018)

    Google Scholar 

  21. Heinz, T.O., Schillinger, M., Hartmann, B., Nelles, O.: Excitation signal design for nonlinear dynamic systems. In: Röpke, K., Gühmann, C. (eds.) International Calibration Conference – Automotive Data Analytics, Methods, DoE, pp. 191–208. expertVerlag (2017)

    Google Scholar 

  22. Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: Modelling linear dynamical systems through generalized orthonormal basis functions. In: IFAC World Congress, vol. 5, pp. 19–22, Sydney, Australia (1993)

    Google Scholar 

  23. Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: A generalized orthonormal basis for linear dynamical systems. IEEE Trans. Autom. Control 40(3), 451–465 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Isermann, R.: Identifikation dynamischer Syteme – Band 1, 2. ed. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  25. Isermann, R.: Identifikation dynamischer Syteme – Band 2, 2. ed. Springer, Berlin (1992)

    Book  Google Scholar 

  26. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26(2), 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  27. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems, part 1: deterministic nonlinear systems. Int. J. Control 41, 303–344 (1985)

    Article  MATH  Google Scholar 

  28. Levin, A.U., Narendra, K.S.: Identification using feedforward networks. Neural Comput. 7(2), 349–357 (1995)

    Article  MATH  Google Scholar 

  29. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  30. Ljung, L.: System identification toolbox for MATLAB user’s guide. The Matlab User’s Guide (1988)

    Google Scholar 

  31. Marconato, A., Sjöberg, J., Suykens, J.A.K., Schoukens, J.: Improved initialization for nonlinear state-space modeling. IEEE Trans. Instrum. Meas. 63(4), 972–980 (2014)

    Article  ADS  Google Scholar 

  32. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons, Hoboken (2008)

    Google Scholar 

  33. Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plan. Inference 43(3), 381–402 (1995)

    Article  MATH  Google Scholar 

  34. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  35. Nelles, O.: On the identification with neural networks as series-parallel and parallel models. In: International Conference on Artificial Neural Networks (ICANN), pp. 255–260, Paris, France (1995)

    Google Scholar 

  36. Nelles, O.: Training neuronaler Netze als seriell-parallele oder parallele Modelle zur Identifikation nichtlinearer, dynamischer Systeme. In: 3. GI Fuzzy-Neuro-Systeme Workshop, pp. 333–339, Darmstadt, Germany (1995)

    Google Scholar 

  37. Nelles, O., Isermann, R.: A comparison between radial basis function networks and classical methods for identification of nonlinear dynamic systems. In: IFAC Symposium on Adaptive Systems in Control and Signal Processing (ASCSP), pp. 233–238, Budapest, Hungary (1995)

    Google Scholar 

  38. Nelles, O., Isermann, R.: Identification of nonlinear dynamic systems – classical methods versus radial basis function networks. In: American Control Conference (ACC), pp. 3786–3790, Seattle, USA (1995)

    Google Scholar 

  39. Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J., Pintelon, R.: Identification of nonlinear systems using polynomial nonlinear state space models. Automatica 46(4), 647–656 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pearlmutter, B.A.: Learning state space trajectories in recurrent neural networks. Neural Comput. 1(2), 263–269 (1989)

    Article  Google Scholar 

  41. Pearlmutter, B.A.: Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans. Neural Netw. 6(5), 1212–1228 (1995)

    Article  Google Scholar 

  42. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Mircostructure of Cognition, vol. 1, chapter 8. MIT Press, Cambridge (1986)

    Google Scholar 

  43. Schoukens, J., Vaes, M., Pintelon, R.: Linear system identification in a nonlinear setting: nonparametric analysis of the nonlinear distortions and their impact on the best linear approximation. IEEE Control Syst. 36(3), 38–69 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sjöberg, J.: Non-Linear System Identification with Neural Networks. Ph.D. thesis, Linköping University, Linköping, Sweden (1995)

    Google Scholar 

  45. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Škrjanc, I.: Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering. IEEE Trans. Fuzzy Syst. 23(4), 861–871 (2015)

    Article  Google Scholar 

  47. Söderström, T., Stoica, P.: System Identification. Prentice Hall, New York (1989)

    MATH  Google Scholar 

  48. Tuis, L.: Anwendung von mehrwertigen pseudozufälligen Signalen zur Identifikation von nichtlinearen Regelungssystemen. Ph.D. thesis, Lehrstuhl für Mess- und Regelungstechnik, Abt. Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany (1975)

    Google Scholar 

  49. Ullrich, T.: Untersuchungen zur effizienten interpolierenden Speicherung von nichtlinearen Prozeßmodellen und Vorsteuerungsstrategien: Methodik und Anwendungen in der Automobilelektronik. Automatisierungstechnik series. Shaker Verlag, Aachen. Ph.D. Thesis, TU Darmstadt (1998)

    Google Scholar 

  50. Van den Hof, P.M.J., Heuberger, P.S.C., Bokor, J.: System identification with generalized orthonormal basis functions. Automatica 31(12), 1821–1834 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Weigend, A.S., Gershenfeld, N.A.: Time series prediction: forecasting the future and understanding the past. Addison-Wesley, Reading (1994)

    Google Scholar 

  52. Williams, R.J.: Adaptive state representation and estimation using recurrent connectionist. In: Miller, W.T., Sutton, R.S., Werbos, P.J. (eds.) Neural Networks for Control, pp. 97–114. MIT Press, Cambridge (1990)

    Google Scholar 

  53. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Nelles, O. (2020). Nonlinear Dynamic System Identification. In: Nonlinear System Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-47439-3_19

Download citation

Publish with us

Policies and ethics