Skip to main content

Linear Dynamic System Identification

  • Chapter
Nonlinear System Identification
  • 3555 Accesses

Abstract

This chapter summarizes the most important issues of the state-of-the-art linear system identification. It introduces the standard terminology and explains its origin as it can be confusing at first. Dynamic models are structured into (i) time series, (ii) model with output feedback, and (iii) model without output feedback. The latter model class typically is underrepresented and underappreciated in most of the literature, in the opinion of the author. Therefore, it is treated more extensively here and also in other chapters of this book. Care is taken to explain the decisive difference between equation (or one-step prediction) error and output (or simulation) error and the consequences associated with their properties. Advanced issues like order determination, multivariate systems, and closed-loop identification are briefly discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a considerable part of the literature and in older publications in particular, the ARX model is called an “ARMA” model to express the fact that both a numerator and a denominator polynomial exist. However, as discussed above, this book follows the current standard terminology established in [356], where ARMA stands for the time series model in (18.9).

  2. 2.

    In some cases, the signal may not depend on time but rather on space (e.g., in geology) or some other quantity.

  3. 3.

    Often ELS denotes the recursive version of this algorithm. Here, for the sake of clarity, the recursive algorithm is named RELS; see Sect. 18.8.3.

  4. 4.

    Often for unstable processes, a simple stabilizing controller is designed, and subsequently, the resulting stable closed-loop system is identified to design a second, more advanced controller for the inner closed-loop system.

  5. 5.

    Filtering requires the choice of a filter bandwidth, and with this choice, certain frequency ranges are emphasized in the model fit; see Sect. 18.7.4. Note that a reasonable choice of the filter bandwidth also requires prior knowledge of the process dynamics.

  6. 6.

    Sometimes denoted only as extended least squares (ELS) [356].

References

  1. Box, G.E.P., Jenkins, G.M.: Times Series Analysis, Forecasting and Control. Holden-Day, San Francisco (1970)

    Google Scholar 

  2. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York (1996)

    Book  MATH  Google Scholar 

  3. Chen, T., Ljung, L.: Implementation of algorithms for tuning parameters in regularized least squares problems in system identification. Automatica 49(7), 2213–2220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eykhoff, P.: System Identification. John Wiley & Sons, London (1974)

    MATH  Google Scholar 

  5. Gevers, M., Ljung, L.: Optimal experiment design with respect to the intended model application. Automatica 22(5), 543–554 (1986)

    Article  MathSciNet  Google Scholar 

  6. Haykin, S.: Adaptive Filter Theory. Prentice Hall, Oxford (1991)

    MATH  Google Scholar 

  7. Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: Modelling linear dynamical systems through generalized orthonormal basis functions. In: IFAC World Congress, vol. 5, pp. 19–22, Sydney, Australia (1993)

    Google Scholar 

  8. Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: A generalized orthonormal basis for linear dynamical systems. IEEE Trans. Autom. Control 40(3), 451–465 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hjalmarsson, H., Gevers, M., de Bruyne, F.: For model-based control design, closed-loop identification gives better performance. Automatica 32(12), 1659–1673 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Isermann, R.: Required accuracy of mathematical models of linear time invariant controlled elements. Automatica 7, 333–341 (1971)

    Article  MATH  Google Scholar 

  11. Isermann, R.: Digitale Regelsysteme – Band 1, 2. ed. Springer, Berlin (1987)

    MATH  Google Scholar 

  12. Isermann, R.: Identifikation dynamischer Syteme – Band 1, 2. ed. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  13. Isermann, R.: Identifikation dynamischer Syteme – Band 2, 2. ed. Springer, Berlin (1992)

    Book  Google Scholar 

  14. Isermann, R., Baur, U., Bamberger, W., Kneppo, P., Siebert, H.: Comparision of six on-line identification and parameter estimation methods. Automatica 10, 81–103 (1974)

    Article  MATH  Google Scholar 

  15. Isermann, R., Lachmann, K.-H., Matko, D.: Adaptive Control Systems. Prentice Hall, New York (1992)

    MATH  Google Scholar 

  16. Johansen, T.A.: Operating Regime Based Process Modeling and Identification. Ph.D. thesis, Dept. of Engineering Cybernetics, Norwegian Institute of Technology, Trondheim, Norway (1994)

    Google Scholar 

  17. Johansson, R.: System Modeling & Identification. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  18. Lim, R.K., Phan, M.Q.: Identification of a multistep-ahead observer and its application to predictive control. J. Guid. Control. Dyn. 20(6), 1200–1206 (1997)

    Article  ADS  MATH  Google Scholar 

  19. Lindskog, P.: Methods, Algorithms and Tools for System Identification Based on Prior Knowledge. Ph.D. thesis, Linköping University, Linköping, Sweden (1996)

    Google Scholar 

  20. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  21. Ljung, L.: System identification toolbox for MATLAB user’s guide. The Matlab User’s Guide (1988)

    Google Scholar 

  22. Marconato, A., Schoukens, M.: Tuning the hyperparameters of the filter-based regularization method for impulse response estimation. IFAC-PapersOnLine 50(1), 12841–12846 (2017)

    Article  Google Scholar 

  23. Marconato, A., Schoukens, M., Schoukens, J.: Filter-based regularisation for impulse response modelling. IET Control Theory Appl. (2016)

    Google Scholar 

  24. McKelvey, T.: Identification of State-Space Models from Time and Frequency Data. Ph.D. thesis, Linköping University, Linköping, Sweden (1995)

    Google Scholar 

  25. Münker, T., Belz, J., Nelles, O.: Improved incorporation of prior knowledge for regularized FIR model identification. In: 2018 Annual American Control Conference (ACC), pp. 1090–1095, Milwaukee, WI. IEEE (2018)

    Google Scholar 

  26. Münker, T., Peter, T., Nelles, O.: Gray-box identification with regularized FIR models. at-Automatisierungstechnik 66(9), 704–713 (2018)

    Google Scholar 

  27. Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L.: Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50(3), 657–682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saridis, G.N.: Comparision of six on-line identification algorithms. Automatica 10, 69–79 (1974)

    Article  MATH  Google Scholar 

  29. Schenker, B., Agarwal, M.: Long-range prediction for poorly-known systems. Int. J. Control 62(1), 227–238 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schenker, B., Agarwal, M.: Dynamic modelling using neural networks. Int. J. Syst. Sci. 28(12), 1285–1298 (1997)

    Article  MATH  Google Scholar 

  31. Schenker, B.G.E.: Prediction and Control Using Feedback Neural Networks and Partial Models. Ph.D. thesis, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland (1996)

    Google Scholar 

  32. Söderström, T., Stoica, P.: System Identification. Prentice Hall, New York (1989)

    MATH  Google Scholar 

  33. Van den Hof, P.M.J.: Closed-loop issues in system identification. In: IFAC Symposium on System Identification, pp. 1651–1664, Fukuoka, Japan (1997)

    Google Scholar 

  34. Van den Hof, P.M.J., Heuberger, P.S.C., Bokor, J.: System identification with generalized orthonormal basis functions. Automatica 31(12), 1821–1834 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Van Overschee, P., De Moor, B.: N4SID: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1), 75–93 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Verhagen, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30(1), 61–74 (1993)

    Article  MathSciNet  Google Scholar 

  37. Viberg, M.: Subspace-based methods for the identification of linear time-invariant systems. Automatica 31(12), 1835–1851 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wahlberg, B.: System identification using Laguerre models. IEEE Trans. Autom. Control 36(5), 551–562 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wahlberg, B.: System identification using Kautz models. IEEE Trans. Autom. Control 39(6), 1276–1282 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Zhan, J., Ishida, M.: The multi-step predictive control of nonlinear siso processes with a neural model predictive control (NMPC) method. Comput. Chem. Eng. 21(2), 201–210 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Nelles, O. (2020). Linear Dynamic System Identification. In: Nonlinear System Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-47439-3_18

Download citation

Publish with us

Policies and ethics