Skip to main content

Abstract

This chapter describes two techniques which generally share the attributes of often needing only minimal sample preparation and/or no additional probe fluid. It covers the basic underlying theory and experimental considerations for both thermoporometry and scattering methods. It discusses the idiosyncratic physical effects associated with, and the particular capabilities of, each type of method, and how these may deliver a range of different descriptors when a suitable experimental method is chosen, and the correct data analysis is employed. It will be shown how descriptors for surface areas, pore and particle size distributions, pore connectivity and pore size spatial correlations can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bafarawa B, Nepryahin A, Ji L, Holt EM, Wang J, Rigby SP (2014) Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids. J Colloid Interface Sci 426:72–79

    Article  CAS  Google Scholar 

  • Debye PA, Anderson HR,.Brumberger H (1957) Scattering by an inhomogeneous solid. II. the correlation function and its application. J Appl Phys 28(6): 679–683

    Google Scholar 

  • Dore J, Webber B, Strange J, Farman H, Descamps M, Carpentier L (2004) Phase transformations for cyclohexane in mesoporous silicas. Phys A 333:10–16

    Article  CAS  Google Scholar 

  • Guinier A, Fournet G, Walker CB, Yudowitch KL (1955) Small-angle scattering of X-rays. Wiley, New York

    Google Scholar 

  • Gun’ko VM, Turov VV, Turov AV, Zarko VI, Gerda VI, Yanishpolskii VV, Berezovska IS, Tertykh VA (2007) Behaviour of pure water and water mixture with benzene or chloroform adsorbed onto ordered mesoporous silicas. Cent Eur J Chem 5(2):420–454

    Google Scholar 

  • Hitchcock I, Holt EM, Lowe JP, Rigby SP (2011) Studies of freezing–melting hysteresis in cryoporometry scanning loop experiments using NMR diffusometry and relaxometry. Chem Eng Sci 66:582–592

    Google Scholar 

  • Hitchcock I, Lunel M, Bakalis S, Fletcher RS, Holt EM, Rigby SP (2014) Improving sensitivity and accuracy of pore structural characterisation using scanning curves in integrated gas sorption and mercury porosimetry experiments. J Colloid Interface Sci 417:88–99

    Article  CAS  Google Scholar 

  • Hollewand MP, Gladden LF (1995) Transport heterogeneity in porous pellets-I. PGSE NMR studies. Chem Eng Sci 50:309–326

    Article  CAS  Google Scholar 

  • Mousa S, Baron K, Softley E, Fletcher RS, Kelly G, Garcia M, Mcleod N, Rigby SP (2019) Elimination of ambiguity in analysis of thermoporometry using dual probe liquids. In: Düren T et al (eds) Characterisation of porous solids XII (COPS-XII)

    Google Scholar 

  • Perkins EL, Lowe JP, Edler KJ, Tanko N, Rigby SP (2008) Determination of the percolation properties and pore connectivity for mesoporous solids using NMR cryodiffusometry. Chem Eng Sci 63:1929–1940

    Article  CAS  Google Scholar 

  • Petrov O, Furó I (2006) Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores. Phys Rev E 73:011608

    Article  Google Scholar 

  • Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid Zeit 124:83–114

    Article  CAS  Google Scholar 

  • Reyes SC, Iglesia E (1991) Effective diffusivities in catalyst pellets: new model porous structures and transport simulation techniques. J Catal 129(2):457–472

    Article  CAS  Google Scholar 

  • Rigby SP, Edler KJ (2002) The influence of mercury contact angle, surface tension and retraction mechanism on the interpretation of mercury porosimetry data. J Colloid Interface Sci 250:175–190

    Article  CAS  Google Scholar 

  • Rigby SP, Hasan M, Stevens L, Williams HEL, Fletcher RS (2017) Determination of pore network accessibility in hierarchical porous solids. Ind Eng Chem Res 56(50):14822–14831

    Article  CAS  Google Scholar 

  • Schreiber A, Ketelsen I, Findenegg GH (2001) Melting and freezing of water in ordered mesoporous silica materials. Phys Chem Chem Phys 3:1185–1195

    Article  CAS  Google Scholar 

  • Venkatrama A, Boateng AA, Fan LT, Walawender WP (1996) Surface fractality of wood charcoals through small-angle X-ray scattering. AIChEJ 42(7):2014–2024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Patrick Rigby .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rigby, S.P. (2020). Thermoporometry and Scattering. In: Structural Characterisation of Natural and Industrial Porous Materials: A Manual. Springer, Cham. https://doi.org/10.1007/978-3-030-47418-8_4

Download citation

Publish with us

Policies and ethics