Skip to main content

The LAVA Model: Learning Analytics Meets Visual Analytics

Part of the Advances in Analytics for Learning and Teaching book series (AALT)

Abstract

Human-centered learning analytics (HCLA) is an approach that emphasizes the human factors in learning analytics and truly meets user needs. User involvement in all stages of the design, analysis, and evaluation of learning analytics is the key to increase value and drive forward the acceptance and adoption of learning analytics. Visual analytics is a multidisciplinary data science research field that follows a human-centered approach and thus has the potential to foster the acceptance of learning analytics. Although various domains have already made use of visual analytics, it has not been considered much with respect to learning analytics. This paper explores the benefits of incorporating visual analytics concepts into the learning analytics process by (a) proposing the Learning Analytics and Visual Analytics (LAVA) model as enhancement of the learning analytics process with human in the loop, (b) applying the LAVA model in the Open Learning Analytics Platform (OpenLAP) to support human-centered indicator design, and (c) evaluating how blending Learning Analytics and Visual Analytics can enhance the acceptance and adoption of learning analytics, based on the technology acceptance model (TAM).

Keywords

  • Human-centered learning analytics
  • Open learning analytics
  • Visual analytics
  • Acceptance
  • Adoption

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bakharia, A., & Dawson, S. (2011). SNAPP: A bird’s-eye view of temporal participant interaction. In Proceedings of the 1st international conference on learning analytics and knowledge (pp. 168–173). ACM.

    Google Scholar 

  • Bodily, R., Kay, J., Aleven, V., Jivet, I., Davis, D., Xhakaj, F., et al. (2018). Open learner models and learning analytics dashboards: A systematic review. In Proceedings of the 8th international conference on learning analytics and knowledge (pp. 41–50). ACM.

    Google Scholar 

  • Brooke, J. (1996). SUS-A quick and dirty usability scale. In P. W. Jordan, B. Thomas, I. L. McClelland, & B. Weerdmeester (Eds.), Usability evaluation in industry (pp. 189–194). London: CRC Press.

    Google Scholar 

  • Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5-6), 318–331.

    CrossRef  Google Scholar 

  • Chatti, M. A., Lukarov, V., Thüs, H., Muslim, A., Yousef, A. M. F., Wahid, U., et al. (2014). Learning analytics: Challenges and future research directions. eleed, 10(1).

    Google Scholar 

  • Chatti, M. A., & Muslim, A. (2019). The PERLA framework: Blending personalization and learning analytics. International Review of Research in Open and Distributed Learning, 20(1).

    Google Scholar 

  • Chatti, M. A., Muslim, A., & Schroeder, U. (2017). Toward an open learning analytics ecosystem. In B. Kei Daniel (Ed.), Big data and learning analytics in higher education: current theory and practice (pp. 195–219). Cham, Switzerland: Springer International Publishing.

    CrossRef  Google Scholar 

  • Clow, D. (2012). The learning analytics cycle: Closing the loop effectively. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 134–138). ACM.

    Google Scholar 

  • Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3–21.

    CrossRef  Google Scholar 

  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.

    CrossRef  Google Scholar 

  • Dix, A., Finlay, J. E., Abowd, G. D., & Beale, R. (2003). Human-computer interaction (3rd ed.). Upper Saddle River, NJ: Prentice-Hall, Inc..

    Google Scholar 

  • Endert, A., Hossain, M. S., Ramakrishnan, N., North, C., Fiaux, P., & Andrews, C. (2014). The human is the loop: New directions for visual analytics. Journal of Intelligent Information Systems, 43(3), 411–435.

    CrossRef  Google Scholar 

  • Ferguson, R., & Clow, D. (2017). Where is the evidence? A call to action for learning analytics. In Proceedings of the seventh international learning analytics & knowledge conference (pp. 56–65). ACM.

    Google Scholar 

  • Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64–71.

    CrossRef  Google Scholar 

  • Jovanovic, J., Gasevic, D., Brooks, C., Devedzic, V., Hatala, M., Eap, T., et al. (2008). LOCO-Analyst: Semantic web technologies in learning content usage analysis. International Journal of Continuing Engineering Education And Life Long Learning, 18(1), 54–76.

    CrossRef  Google Scholar 

  • Keim, D., Andrienko, G., Fekete, J. D., Görg, C., Kohlhammer, J., & Melançon, G. (2008). Visual analytics: Definition, process, and challenges. In Information visualization (pp. 154–175). Berlin\Heidelberg, Germany: Springer.

    CrossRef  Google Scholar 

  • Keim, D. A., Mansmann, F., Schneidewind, J., & Ziegler, H. (2006). Challenges in visual data analysis. In Tenth International Conference on Information Visualisation (IV’06) (pp. 9–16). IEEE.

    Google Scholar 

  • Keim, D. A., Mansmann, F., Stoffel, A., & Ziegler, H. (2009). Visual analytics. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems. Boston: Springer.

    Google Scholar 

  • Leony, D., Pardo, A., de la Fuente Valentín, L., de Castro, D. S., & Kloos, C. D. (2012). GLASS: A learning analytics visualization tool. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 162–163). ACM.

    Google Scholar 

  • Lukarov, V., Chatti, M. A., Thüs, H., Kia, F. S., Muslim, A., Greven, C., & Schroeder, U. (2014). Data models in learning analytics. In Proceedings of DeLFI Workshops (pp. 88–95).

    Google Scholar 

  • Muslim, A., Chatti, M. A., Bashir, M. B., Varela, O. E. B., & Schroeder, U. (2018). A modular and extensible framework for open learning analytics. Journal of Learning Analytics, 5(1), 92–100.

    CrossRef  Google Scholar 

  • Muslim, A., Chatti, M. A., Mahapatra, T., & Schroeder, U. (2016). A rule-based indicator definition tool for personalized learning analytics. In Proceedings of the sixth international conference on learning analytics & knowledge (pp. 264–273). ACM.

    Google Scholar 

  • Muslim, A., Chatti, M. A., Mughal, M., & Schroeder, U. (2017). The goal-question-indicator approach for personalized learning analytics. In Proceedings of the 9th international conference on computer supported education CSEDU (1) (pp. 371–378).

    Google Scholar 

  • Nielsen, J. (1994). Usability inspection methods. In Conference companion on, human factors in computing systems, CHI ’94 (pp. 413–414). New York: ACM.

    Google Scholar 

  • Ritsos, P. D., & Roberts, J. C. (2014). Towards more visual analytics in learning analytics. In Proceedings of the 5th EuroVis Workshop on Visual Analytics (pp. 61–65).

    Google Scholar 

  • Thomas, J. J., & Cook, K. A. (2005). Illuminating the path: The research and development agenda for visual analytics. IEEE Press,

    Google Scholar 

  • Thüs, H., Chatti, M. A., Greven, C., & Schroeder, U. (2014). Kontexterfassung,-modellierung und-auswertung in Lernumgebungen. DeLFI 2014-Die 12. In e-Learning Fachtagung Informatik (pp. 157–162). Gesellschaft für Informatik.

    Google Scholar 

  • Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500–1509.

    CrossRef  Google Scholar 

  • Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., et al. (2014). Learning dashboards: An overview and future research opportunities. Personal and Ubiquitous Computing, 18(6), 1499–1514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine Chatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatti, M.A., Muslim, A., Guliani, M., Guesmi, M. (2020). The LAVA Model: Learning Analytics Meets Visual Analytics. In: Ifenthaler, D., Gibson, D. (eds) Adoption of Data Analytics in Higher Education Learning and Teaching. Advances in Analytics for Learning and Teaching. Springer, Cham. https://doi.org/10.1007/978-3-030-47392-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47392-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47391-4

  • Online ISBN: 978-3-030-47392-1

  • eBook Packages: EducationEducation (R0)