Skip to main content

Gut Microbiota and Risk for Atherosclerosis: Current Understanding of the Mechanisms

  • Chapter
  • First Online:
Gut Microbiome and Its Impact on Health and Diseases
  • 1644 Accesses

Abstract

Commensal bacteria inhabiting mucosal surfaces of the body contribute to the development of numerous diseases including cardiovascular and metabolic diseases. Disruption of the otherwise beneficial homeostatic gut microbial ecosystem leads to dysbiosis, and consequent augmentation of the risk of various diseases. We aim to discuss current understanding of the mechanisms whereby microbiota might affect the pathogenesis of atherosclerosis and its associated risk factors. In particular, we critically review the role of gut microbiota in the modulation of inflammation and lipid metabolism and discuss how they can aggravate atherosclerotic lesion formation. We also review the role of gut microbiota-derived metabolites such as short-chain fatty acids and trimethylamine N-oxide, highlighting their harmful and beneficial effects in various pathophysiological conditions. Lastly, we delve into therapeutic manipulations, such as the use of prebiotics, probiotics, and small molecules directed at reshaping the gut microbial community, in the hope of translating these findings into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerholm-Larsen, L., Raben, A., Haulrik, N., Hansen, A. S., Manders, M., & Astrup, A. (2000). Effect of 8-week intake of probiotic milk products on risk factors for cardiovascular diseases. European Journal of Clinical Nutrition, 54(4), 288–297.

    Article  CAS  PubMed  Google Scholar 

  • Aron-Wisnewsky, J., Doré, J., & Clement, K. (2012). The importance of the gut microbiota after bariatric surgery. Nature Reviews. Gastroenterology & Hepatology, 9(10), 590–598.

    Article  Google Scholar 

  • Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., de Roos, P., Liu, H., Cross, J. R., Pfeffer, K., Coffer, P. J., & Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15718–15723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellahcene, M., O'Dowd, J. F., Wargent, E. T., Zaibi, M. S., Hislop, D. C., Ngala, R. A., Smith, D. M., Cawthorne, M. A., Stocker, C. J., & Arch, J. R. (2013). Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. The British Journal of Nutrition, 109(10), 1755–1764.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, B. J., de Aguiar Vallim, T. Q., Wang, Z., Shih, D. M., Meng, Y., Gregory, J., Allayee, H., Lee, R., Graham, M., Crooke, R., Edwards, P. A., Hazen, S. L., & Lusis, A. J. (2013). Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metabolism, 17(1), 49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidulescu, A., Chambless, L. E., Siega-Riz, A. M., Zeisel, S. H., & Heiss, G. (2007). Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovascular Disorders, 7, 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bjursell, M., Admyre, T., Göransson, M., Marley, A. E., Smith, D. M., Oscarsson, J., & Bohlooly-Y, M. (2011). Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. American Journal of Physiology. Endocrinology and Metabolism, 300(1), E211–E220.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. M., & Hazen, S. L. (2018). Microbial modulation of cardiovascular disease. Nature Reviews. Microbiology, 16(3), 171–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canfora, E. E., Jocken, J. W., & Blaak, E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews. Endocrinology, 11(10), 577–591.

    Article  CAS  PubMed  Google Scholar 

  • Canfora, E. E., van der Beek, C. M., Jocken, J. W. E., Goossens, G. H., Holst, J. J., Olde Damink, S. W. M., Lenaerts, K., Dejong, C. H. C., & Blaak, E. E. (2017). Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Scientific Reports, 7(1), 2360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., & Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1172.

    Article  CAS  PubMed  Google Scholar 

  • Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57(6), 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  • Cani, P. D., Osto, M., Geurts, L., & Everard, A. (2012). Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes, 3(4), 279–288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cashman, J. R., Camp, K., Fakharzadeh, S. S., Fennessey, P. V., Hines, R. N., Mamer, O. A., Mitchell, S. C., Nguyen, G. P., Schlenk, D., Smith, R. L., Tjoa, S. S., Williams, D. E., & Yannicelli, S. (2003). Biochemical and clinical aspects of the human flavin-containing monooxygenase form 3 (FMO3) related to trimethylaminuria. Current Drug Metabolism, 4(2), 151–170.

    Article  CAS  PubMed  Google Scholar 

  • Catry, E., Bindels, L. B., Tailleux, A., Lestavel, S., Neyrinck, A. M., Goossens, J. F., Lobysheva, I., Plovier, H., Essaghir, A., Demoulin, J. B., Bouzin, C., Pachikian, B. D., Cani, P. D., Staels, B., Dessy, C., & Delzenne, N. M. (2018). Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut, 67(2), 271–283.

    Article  CAS  PubMed  Google Scholar 

  • Chaplin, A., Parra, P., Serra, F., & Palou, A. (2015). Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One, 10(4), e0125091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, M. L., Yi, L., Zhang, Y., Zhou, X., Ran, L., Yang, J., Zhu, J. D., Zhang, Q. Y., & Mi, M. T. (2016). Resveratrol attenuates Trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio, 7(2), e02210–e02215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colldahl, H. (1965). The intestinal flora in patients with bronchial asthma and rheumatoid arthritis. Acta Allergol, 20, 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Collins, H. L., Drazul-Schrader, D., Sulpizio, A. C., Koster, P. D., Williamson, Y., Adelman, S. J., Owen, K., Sanli, T., & Bellamine, A. (2016). L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(−/−) transgenic mice expressing CETP. Atherosclerosis, 244, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Collot-Teixeira, S., Martin, J., McDermott-Roe, C., Poston, R., & McGregor, J. L. (2007). CD36 and macrophages in atherosclerosis. Cardiovascular Research, 75, 468–477.

    Article  CAS  PubMed  Google Scholar 

  • Cox, L. M., & Blaser, M. J. (2013). Pathways in microbe-induced obesity. Cell Metabolism, 17(6), 883–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalmeijer, G. W., Olthof, M. R., Verhoef, P., Bots, M. L., & van der Schouw, Y. T. (2008). Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women. European Journal of Clinical Nutrition, 62(3), 386–394.

    Article  CAS  PubMed  Google Scholar 

  • Daugirdas, J. T., & Nawab, Z. M. (1987). Acetate relaxation of isolated vascular smooth muscle. Kidney International, 32(1), 39–46.

    Article  CAS  PubMed  Google Scholar 

  • De Vadder, F., Kovatcheva-Datchary, P., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2016). Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metabolism, 24(1), 151–157.

    Article  PubMed  CAS  Google Scholar 

  • den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325–2340.

    Article  CAS  Google Scholar 

  • Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 107, 11971–11975.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durgan, D. J., Ganesh, B. P., Cope, J. L., Ajami, N. J., Phillips, S. C., Petrosino, J. F., Hollister, E. B., & Bryan, R. M., Jr. (2016). Role of the gut microbiome in obstructive sleep Apnea-induced hypertension. Hypertension, 67(2), 469–474.

    Article  CAS  PubMed  Google Scholar 

  • Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308(5728), 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  • El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D., & Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews. Microbiology, 11(7), 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Ettinger, G., MacDonald, K., Reid, G., & Burton, J. P. (2014). The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes, 5(6), 719–728.

    Article  PubMed  PubMed Central  Google Scholar 

  • Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066–9071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk, E., Nakano, M., Bentzon, J. F., Finn, A. V., & Virmani, R. (2013). Update on acute coronary syndromes: The pathologists’ view. European Heart Journal, 34, 719–728.

    Article  CAS  PubMed  Google Scholar 

  • Ferrier, K. E., Muhlmann, M. H., Baguet, J. P., Cameron, J. D., Jennings, G. L., Dart, A. M., & Kingwell, B. A. (2002). Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. Journal of the American College of Cardiology, 39(6), 1020–1005.

    Article  CAS  PubMed  Google Scholar 

  • Fouhy, F., Ross, R. P., Fitzgerald, G. F., Stanton, C., & Cotter, P. D. (2012). Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes, 3(3), 203–220.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fry, L., & Baker, B. S. (2007). Triggering psoriasis: the role of infections and medications. Clinics in Dermatology, 25(6), 606–615.

    Article  PubMed  Google Scholar 

  • Fuentes, M. C., Lajo, T., Carrión, J. M., & Cuñé, J. (2013). Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. The British Journal of Nutrition, 109(10), 1866–1872.

    Article  CAS  PubMed  Google Scholar 

  • Gaboriau-Routhiau, V., Rakotobe, S., Lécuyer, E., Mulder, I., Lan, A., Bridonneau, C., Rochet, V., Pisi, A., De Paepe, M., Brandi, G., Eberl, G., Snel, J., Kelly, D., & Cerf-Bensussan, N. (2009). The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity, 31(4), 677–689.

    Article  CAS  PubMed  Google Scholar 

  • Ghanim, H., Abuaysheh, S., Sia, C. L., Korzeniewski, K., Chaudhuri, A., Fernandez-Real, J. M., & Dandona, P. (2009). Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care, 32(12), 2281–2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoshal, S., Witta, J., Zhong, J., de Villiers, W., & Eckhardt, E. (2009). Chylomicrons promote intestinal absorption of lipopolysaccharides. Journal of Lipid Research, 50(1), 90–97.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Ambrosi, J., Silva, C., Galofré, J. C., Escalada, J., Santos, S., Gil, M. J., Valentí, V., Rotellar, F., Ramírez, B., Salvador, J., & Frühbeck, G. (2011). Body adiposity and type 2 diabetes: increased risk with a high body fat percentage even having a normal BMI. Obesity, 19(7), 1439–1444.

    Article  PubMed  Google Scholar 

  • Gosalbes, M. J., Durbán, A., Pignatelli, M., Abellan, J. J., Jiménez-Hernández, N., Pérez-Cobas, A. E., Latorre, A., & Moya, A. (2011). Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 6(3), e17447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosalbes, M. J., Abellan, J. J., Durbán, A., Pérez-Cobas, A. E., Latorre, A., & Moya, A. (2012). Metagenomics of human microbiome: beyond 16s rDNA. Clinical Microbiology and Infection, 18(Suppl 4), 47–49.

    Article  CAS  PubMed  Google Scholar 

  • Gregor, M. F., & Hotamisligil, G. S. (2011). Inflammatory mechanisms in obesity. Annual Review of Immunology, 29, 415–445.

    Article  CAS  PubMed  Google Scholar 

  • Guarner, F. (2008). What is the role of the enteric commensal flora in IBD? Inflammatory Bowel Diseases, 14(Suppl 2), S83–S84.

    Article  PubMed  Google Scholar 

  • Hartman, H. B., Gardell, S. J., Petucci, C. J., Wang, S., Krueger, J. A., & Evans, M. J. (2009). Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR−/− and apoE−/− mice. Journal of Lipid Research, 50(6), 1090–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoving, L. R., Katiraei, S., Heijink, M., Pronk, A., van der Wee-Pals, L., Streefland, T., Giera, M., Willems van Dijk, K., & van Harmelen, V. (2018). Dietary Mannan oligosaccharides modulate gut microbiota, increase fecal bile acid excretion, and decrease plasma cholesterol and atherosclerosis development. Molecular Nutrition & Food Research, 62(10), e1700942.

    Article  CAS  Google Scholar 

  • Kallus, S. J., & Brandt, L. J. (2012). The intestinal microbiota and obesity. Journal of Clinical Gastroenterology, 46(1), 16–24.

    Article  PubMed  Google Scholar 

  • Kapil, V., Haydar, S. M., Pearl, V., Lundberg, J. O., Weitzberg, E., & Ahluwalia, A. (2013). Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radical Biology & Medicine, 55, 93–100.

    Article  CAS  Google Scholar 

  • Karbach, S. H., Schönfelder, T., Brandão, I., Wilms, E., Hörmann, N., Jäckel, S., Schüler, R., Finger, S., Knorr, M., Lagrange, J., Brandt, M., Waisman, A., Kossmann, S., Schäfer, K., Münzel, T., Reinhardt, C., & Wenzel, P. (2016). Gut microbiota promote Angiotensin II-induced arterial hypertension and vascular dysfunction. Journal of the American Heart Association, 5(9), e003698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlsson, F. H., FÃ¥k, F., Nookaew, I., Tremaroli, V., Fagerberg, B., Petranovic, D., Bäckhed, F., & Nielsen, J. (2012). Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Communications, 3, 1245.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C. J., Fagerberg, B., Nielsen, J., & Bäckhed, F. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452), 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Kaska, L., Sledzinski, T., Chomiczewska, A., Dettlaff-Pokora, A., & Swierczynski, J. (2016). Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World Journal of Gastroenterology, 22(39), 8698–8719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., Britt, E. B., Fu, X., Wu, Y., Li, L., Smith, J. D., DiDonato, J. A., Chen, J., Li, H., Wu, G. D., Lewis, J. D., Warrier, M., Brown, J. M., Krauss, R. M., Tang, W. H., Bushman, F. D., Lusis, A. J., & Hazen, S. L. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332–1345.

    Article  CAS  PubMed  Google Scholar 

  • Kohashi, O., Kuwata, J., Umehara, K., Uemura, F., Takahashi, T., & Ozawa, A. (1979). Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats. Infection and Immunity, 26(3), 791–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolmeder, C. A., de Been, M., Nikkilä, J., Ritamo, I., Mättö, J., Valmu, L., Salojärvi, J., Palva, A., Salonen, A., & de Vos, W. M. (2012). Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One, 7(1), e29913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppe, L., Pillon, N. J., Vella, R. E., Croze, M. L., Pelletier, C. C., Chambert, S., Massy, Z., Glorieux, G., Vanholder, R., Dugenet, Y., Soula, H. A., Fouque, D., & Soulage, C. O. (2013). p-Cresyl sulfate promotes insulin resistance associated with CKD. Journal of the American Society of Nephrology, 24(1), 88–99.

    Article  CAS  PubMed  Google Scholar 

  • Koyama, M., Hattori, S., Amano, Y., Watanabe, M., & Nakamura, K. (2014). Blood pressure-lowering peptides from neo-fermented buckwheat sprouts: a new approach to estimating ACE-inhibitory activity. PLoS One, 9(9), e105802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kugelberg, E. (2013). Surgery: Altered gut microbiota trigger weight loss. Nature Reviews. Endocrinology, 9(6), 314.

    Article  PubMed  Google Scholar 

  • Lairon, D., Arnault, N., Bertrais, S., Planells, R., Clero, E., Hercberg, S., & Boutron-Ruault, M. C. (2005). Dietary fiber intake and risk factors for cardiovascular disease in French adults. The American Journal of Clinical Nutrition, 82(6), 1185–1194.

    Article  CAS  PubMed  Google Scholar 

  • Lang, D. H., Yeung, C. K., Peter, R. M., Ibarra, C., Gasser, R., Itagaki, K., Philpot, R. M., & Rettie, A. E. (1998). Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochemical Pharmacology, 56(8), 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  • Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J. M., Kennedy, S., Leonard, P., Li, J., Burgdorf, K., Grarup, N., Jørgensen, T., Brandslund, I., Nielsen, H. B., Juncker, A. S., Bertalan, M., Levenez, F., Pons, N., Rasmussen, S., Sunagawa, S., Tap, J., Tims, S., Zoetendal, E. G., Brunak, S., Clément, K., Doré, J., Kleerebezem, M., Kristiansen, K., Renault, P., Sicheritz-Ponten, T., de Vos, W. M., Zucker, J. D., Raes, J., Hansen, T., MetaHIT consortium, Bork, P., Wang, J., Ehrlich, S. D., & Pedersen, O. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464), 541–546.

    Article  PubMed  CAS  Google Scholar 

  • Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., & Shimizu, Y. (2017). Kimura I Gut microbial metabolite short-chain fatty acids and obesity. Bioscience of Microbiota, Food and Health, 36(4), 135–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., Kultima, J. R., Prifti, E., Nielsen, T., Juncker, A. S., Manichanh, C., Chen, B., Zhang, W., Levenez, F., Wang, J., Xu, X., Xiao, L., Liang, S., Zhang, D., Zhang, Z., Chen, W., Zhao, H., Al-Aama, J. Y., Edris, S., Yang, H., Wang, J., Hansen, T., Nielsen, H. B., Brunak, S., Kristiansen, K., Guarner, F., Pedersen, O., Doré, J., Ehrlich, S. D., MetaHIT Consortium, Bork, P., & Wang, J. (2014). An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology, 32(8), 834–841.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., Geng, B., Zhang, W., Weldon, R., Auguste, K., Yang, L., Liu, X., Chen, L., Yang, X., Zhu, B., & Cai, J. (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 5(1), 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundberg, J. O., & Govoni, M. (2004). Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radical Biology & Medicine, 37(3), 395–400.

    Article  CAS  Google Scholar 

  • Lusis, A. J. (2000). Atherosclerosis. Nature, 407, 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz, T. A., & Bueter, M. (2014). Physiological mechanisms behind Roux-en-Y gastric bypass surgery. Digestive Surgery, 31(1), 13–24.

    Article  PubMed  Google Scholar 

  • Ma, G., Pan, B., Chen, Y., Guo, C., Zhao, M., Zheng, L., & Chen, B. (2017). Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion. Bioscience Reports, 37(2), BSR20160244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques, F. Z., Nelson, E., Chu, P. Y., Horlock, D., Fiedler, A., Ziemann, M., Tan, J. K., Kuruppu, S., Rajapakse, N. W., El-Osta, A., Mackay, C. R., & Kaye, D. M. (2017). High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 135(10), 964–977.

    Article  CAS  PubMed  Google Scholar 

  • McLaren, J. E., Michael, D. R., Ashlin, T. G., & Ramji, D. P. (2011). Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Progress in Lipid Research, 50, 331–347.

    Article  CAS  PubMed  Google Scholar 

  • McNelis, J. C., Lee, Y. S., Mayoral, R., van der Kant, R., Johnson, A. M., Wollam, J., & Olefsky, J. M. (2015). GPR43 potentiates β-Cell function in obesity. Diabetes, 64(9), 3203–3217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao, J., Ling, A. V., Manthena, P. V., Gearing, M. E., Graham, M. J., Crooke, R. M., Croce, K. J., Esquejo, R. M., Clish, C. B., Morbid Obesity Study Group, Vicent, D., & Biddinger, S. B. (2015). Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nature Communications, 6, 6498.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto, J., Kasubuchi, M., Nakajima, A., Irie, J., Itoh, H., & Kimura, I. (2016). The role of short-chain fatty acid on blood pressure regulation. Current Opinion in Nephrology and Hypertension, 25(5), 379–383.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki-Anzai, S., Masuda, M., Levi, M., Keenan, A. L., & Miyazaki, M. (2014). Dual activation of the bile acid nuclear receptor FXR and G-protein-coupled receptor TGR5 protects mice against atherosclerosis. PLoS One, 9(9), e108270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore, K. J., & Tabas, I. (2011). The cellular biology of macrophages in atherosclerosis. Cell, 145, 341–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic balance. Nature Reviews. Immunology, 13(10), 709–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata, C., Wada, K., Tamura, T., Konishi, K., Kawachi, T., Tsuji, M., & Nakamura, K. (2015). Choline and Betaine intakes are not associated with cardiovascular disease mortality risk in Japanese men and women. The Journal of Nutrition, 145(8), 1787–1792.

    Article  CAS  PubMed  Google Scholar 

  • Neal, M. D., Leaphart, C., Levy, R., Prince, J., Billiar, T. R., Watkins, S., Li, J., Cetin, S., Ford, H., Schreiber, A., & Hackam, D. J. (2006). Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. Journal of Immunology, 176(5), 3070–3079.

    Article  CAS  Google Scholar 

  • Nguyen, T. D., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology, 113(3), 358–361.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., Holmes, E., & Wilson, I. D. (2005). Gut microorganisms, mammalian metabolism and personalized health care. Nature Reviews. Microbiology, 3(5), 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Nutting, C. W., Islam, S., & Daugirdas, J. T. (1991). Vasorelaxant effects of short chain fatty acid salts in rat caudal artery. The American Journal of Physiology, 261(2 Pt 2), H561–H567.

    CAS  PubMed  Google Scholar 

  • Ochoa-Repáraz, J., Mielcarz, D. W., Ditrio, L. E., Burroughs, A. R., Foureau, D. M., Haque-Begum, S., & Kasper, L. H. (2009). Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. Journal of Immunology, 183(10), 6041–6050.

    Article  CAS  Google Scholar 

  • Ortega, F. B., Lavie, C. J., & Blair, S. N. (2016). Obesity and cardiovascular disease. Circulation Research, 118(11), 1752–1770.

    Article  CAS  PubMed  Google Scholar 

  • Osto, M., Abegg, K., Bueter, M., le Roux, C. W., Cani, P. D., & Lutz, T. A. (2013). Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiology & Behavior, 119, 92–96.

    Article  CAS  Google Scholar 

  • Ottman, N., Reunanen, J., Meijerink, M., Pietilä, T. E., Kainulainen, V., Klievink, J., Huuskonen, L., Aalvink, S., Skurnik, M., Boeren, S., Satokari, R., Mercenier, A., Palva, A., Smidt, H., de Vos, W. M., & Belzer, C. (2017). Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One, 12(3), e0173004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the Human infant intestinal microbiota. PLoS Biology, 5, e177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkhill, J. (2013). What has high-throughput sequencing ever done for us? Nature Reviews. Microbiology, 11(10), 664–665.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., Hyotylainen, T., Nielsen, T., Jensen, B. A., Forslund, K., Hildebrand, F., Prifti, E., Falony, G., Le Chatelier, E., Levenez, F., Doré, J., Mattila, I., Plichta, D. R., Pöhö, P., Hellgren, L. I., Arumugam, M., Sunagawa, S., Vieira-Silva, S., Jørgensen, T., Holm, J. B., TroÅ¡t, K., MetaHIT Consortium, Kristiansen, K., Brix, S., Raes, J., Wang, J., Hansen, T., Bork, P., Brunak, S., Oresic, M., Ehrlich, S. D., & Pedersen, O. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 535(7612), 376–381.

    Article  CAS  PubMed  Google Scholar 

  • Petersson, J., Carlström, M., Schreiber, O., Phillipson, M., Christoffersson, G., Jägare, A., Roos, S., Jansson, E. A., Persson, A. E., Lundberg, J. O., & Holm, L. (2009). Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radical Biology & Medicine, 46(8), 1068–1675.

    Article  CAS  Google Scholar 

  • Piya, M. K., McTernan, P. G., & Kumar, S. (2013). Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. The Journal of Endocrinology, 216(1), T1–T15.

    Article  CAS  PubMed  Google Scholar 

  • Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., van der Ark, K. C., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., Loumaye, A., Hermans, M. P., Thissen, J. P., Belzer, C., de Vos, W. M., & Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23(1), 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Pluznick, J. L., Protzko, R. J., Gevorgyan, H., Peterlin, Z., Sipos, A., Han, J., Brunet, I., Wan, L. X., Rey, F., Wang, T., Firestein, S. J., Yanagisawa, M., Gordon, J. I., Eichmann, A., Peti-Peterdi, J., & Caplan, M. J. (2013). Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4410–4415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., Wu, P., Dai, Y., Sun, X., Li, Z., Tang, A., Zhong, S., Li, X., Chen, W., Xu, R., Wang, M., Feng, Q., Gong, M., Yu, J., Zhang, Y., Zhang, M., Hansen, T., Sanchez, G., Raes, J., Falony, G., Okuda, S., Almeida, M., LeChatelier, E., Renault, P., Pons, N., Batto, J. M., Zhang, Z., Chen, H., Yang, R., Zheng, W., Li, S., Yang, H., Wang, J., Ehrlich, S. D., Nielsen, R., Pedersen, O., Kristiansen, K., & Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Ramadoss, P., Marcus, C., & Perdew, G. H. (2005). Role of the aryl hydrocarbon receptor in drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 1(1), 9–21.

    Article  CAS  Google Scholar 

  • Rault-Nania, M. H., Gueux, E., Demougeot, C., Demigné, C., Rock, E., & Mazur, A. (2006). Inulin attenuates atherosclerosis in apolipoprotein E-deficient mice. The British Journal of Nutrition, 96(5), 840–844.

    Article  CAS  PubMed  Google Scholar 

  • Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., Griffin, N. W., Lombard, V., Henrissat, B., Bain, J. R., Muehlbauer, M. J., Ilkayeva, O., Semenkovich, C. F., Funai, K., Hayashi, D. K., Lyle, B. J., Martini, M. C., Ursell, L. K., Clemente, J. C., Van Treuren, W., Walters, W. A., Knight, R., Newgard, C. B., Heath, A. C., & Gordon, J. I. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341(6150), 1241214.

    Article  PubMed  CAS  Google Scholar 

  • Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., Stahl, B., Guarner, F., Respondek, F., Whelan, K., Coxam, V., Davicco, M. J., Léotoing, L., Wittrant, Y., Delzenne, N. M., Cani, P. D., Neyrinck, A. M., & Meheust, A. (2010). Prebiotic effects: metabolic and health benefits. The British Journal of Nutrition, 104(Suppl 2), S1–63.

    PubMed  Google Scholar 

  • Ryan, K. K., Tremaroli, V., Clemmensen, C., Kovatcheva-Datchary, P., Myronovych, A., Karns, R., Wilson-Pérez, H. E., Sandoval, D. A., Kohli, R., Bäckhed, F., & Seeley, R. J. (2014). FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature, 509(7499), 183–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., Hammer, R. E., Williams, S. C., Crowley, J., Yanagisawa, M., & Gordon, J. I. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16767–16772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, M. E. (2008). Probiotics: definition, sources, selection, and uses. Clinical Infectious Diseases, 46(Suppl 2), S58–61; discussion S144–51.

    Article  PubMed  Google Scholar 

  • Santiago, A., Panda, S., Mengels, G., Martinez, X., Azpiroz, F., Dore, J., Guarner, F., & Manichanh, C. (2014). Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiology, 14, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sartor, R. B. (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology, 134(2), 577–594.

    Article  CAS  PubMed  Google Scholar 

  • Sartor, R. B., & Wu, G. D. (2017). Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology, 152(2), 327–339.

    Article  CAS  PubMed  Google Scholar 

  • Senthong, V., Li, X. S., Hudec, T., Coughlin, J., Wu, Y., Levison, B., Wang, Z., Hazen, S. L., & Tang, W. H. (2016). Plasma Trimethylamine N-Oxide, a Gut Microbe-Generated Phosphatidylcholine Metabolite, Is Associated With Atherosclerotic Burden. Journal of the American College of Cardiology, 67(22), 2620–2628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I., Yin, H., & Flier, J. S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation, 116(11), 3015–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih, D. M., Wang, Z., Lee, R., Meng, Y., Che, N., Charugundla, S., Qi, H., Wu, J., Pan, C., Brown, J. M., Vallim, T., Bennett, B. J., Graham, M., Hazen, S. L., & Lusis, A. J. (2015). Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. Journal of Lipid Research, 56(1), 22–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparacino-Watkins, C., Stolz, J. F., & Basu, P. (2014). Nitrate and periplasmic nitrate reductases. Chemical Society Reviews, 43(2), 676–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, J. K., McKenzie, C., Mariño, E., Macia, L., & Mackay, C. R. (2017). Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annual Review of Immunology, 35, 371–402.

    Article  CAS  PubMed  Google Scholar 

  • Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., Wu, Y., & Hazen, S. L. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine, 368(17), 1575–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W. H., Wang, Z., Shrestha, K., Borowski, A. G., Wu, Y., Troughton, R. W., Klein, A. L., & Hazen, S. L. (2015). Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. Journal of Cardiac Failure, 21(2), 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., Pellicciari, R., Auwerx, J., & Schoonjans, K. (2009). TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism, 10(3), 167–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Tremaroli, V., Karlsson, F., Werling, M., StÃ¥hlman, M., Kovatcheva-Datchary, P., Olbers, T., Fändriks, L., le Roux, C. W., Nielsen, J., & Bäckhed, F. (2015). Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metabolism, 22(2), 228–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031.

    Article  PubMed  Google Scholar 

  • Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. A., Affourtit, J. P., Egholm, M., Henrissat, B., Heath, A. C., Knight, R., & Gordon, J. I. (2009). A core gut microbiome in obese and lean twins. Nature, 457(7228), 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Ufnal, M., Jazwiec, R., Dadlez, M., Drapala, A., Sikora, M., & Skrzypecki, J. (2014). Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. The Canadian Journal of Cardiology, 30(12), 1700–1705.

    Article  PubMed  Google Scholar 

  • Valdimarsson, H., Baker, B. S., Jónsdóttir, I., Powles, A., & Fry, L. (1995). Psoriasis: a T-cell-mediated autoimmune disease induced by streptococcal superantigens? Immunology Today, 16(3), 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh, M., Mukherjee, S., Wang, H., Li, H., Sun, K., Benechet, A. P., Qiu, Z., Maher, L., Redinbo, M. R., Phillips, R. S., Fleet, J. C., Kortagere, S., Mukherjee, P., Fasano, A., Le Ven, J., Nicholson, J. K., Dumas, M. E., Khanna, K. M., & Mani, S. (2014). Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 41(2), 296–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veprik, A., Laufer, D., Weiss, S., Rubins, N., & Walker, M. D. (2016). GPR41 modulates insulin secretion and gene expression in pancreatic β-cells and modifies metabolic homeostasis in fed and fasting states. The FASEB Journal, 30(11), 3860–3869.

    Article  CAS  PubMed  Google Scholar 

  • Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., Cullender, T. C., Mwangi, S., Srinivasan, S., Sitaraman, S. V., Knight, R., Ley, R. E., & Gewirtz, A. T. (2010). Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science, 328(5975), 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vreugdenhil, A. C., Rousseau, C. H., Hartung, T., Greve, J. W., van 't Veer, C., & Buurman, W. A. (2003). Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. Journal of Immunology, 170(3), 1399–1405.

    Article  CAS  Google Scholar 

  • Wander, P. L., Boyko, E. J., Leonetti, D. L., McNeely, M. J., Kahn, S. E., & Fujimoto, W. Y. (2013). Change in visceral adiposity independently predicts a greater risk of developing type 2 diabetes over 10 years in Japanese Americans. Diabetes Care, 36(2), 289–293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., & Kasper, L. H. (2014). The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity, 38, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y. M., Wu, Y., Schauer, P., Smith, J. D., Allayee, H., Tang, W. H., DiDonato, J. A., Lusis, A. J., & Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrier, M., Shih, D. M., Burrows, A. C., Ferguson, D., Gromovsky, A. D., Brown, A. L., Marshall, S., McDaniel, A., Schugar, R. C., Wang, Z., Sacks, J., Rong, X., Vallim, T. A., Chou, J., Ivanova, P. T., Myers, D. S., Brown, H. A., Lee, R. G., Crooke, R. M., Graham, M. J., Liu, X., Parini, P., Tontonoz, P., Lusis, A. J., Hazen, S. L., Temel, R. E., & Brown, J. M. (2015). The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Reports. pii: S2211-1247(14)01065-1.

    Google Scholar 

  • Watzl, B., Girrbach, S., & Roller, M. (2005). Inulin, oligofructose and immunomodulation. The British Journal of Nutrition, 93(Suppl 1), S49–S55.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Ma, C., Han, L., Nawaz, M., Gao, F., Zhang, X., Yu, P., Zhao, C., Li, L., Zhou, A., Wang, J., Moore, J. E., Millar, B. C., & Xu, J. (2010). Molecular characterisation of the faecal microbiota in patients with type II diabetes. Current Microbiology, 61(1), 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, H., Jain, S., & Sinha, P. R. (2007). Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition, 23(1), 62–68.

    Article  PubMed  Google Scholar 

  • Yamashiro, K., Tanaka, R., Urabe, T., Ueno, Y., Yamashiro, Y., Nomoto, K., Takahashi, T., Tsuji, H., Asahara, T., & Hattori, N. (2017). Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One, 12(2), e0171521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, T., Santisteban, M. M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J. M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., Sahay, B., Pepine, C. J., Raizada, M. K., & Mohamadzadeh, M. (2015). Gut dysbiosis is linked to hypertension. Hypertension, 65(6), 1331–1340.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., DiBaise, J. K., Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., Parameswaran, P., Crowell, M. D., Wing, R., Rittmann, B. E., & Krajmalnik-Brown, R. (2009). Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2365–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., Sartor, R. B., McIntyre, T. M., Silverstein, R. L., Tang, W. H. W., DiDonato, J. A., Brown, J. M., Lusis, A. J., & Hazen, S. L. (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165(1), 111–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, L., Zhang, D., Zhu, H., Zhu, J., Weng, S., Dong, L., Liu, T., Hu, Y., & Shen, X. (2018). Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe−/− mice. Atherosclerosis, 268, 117–126.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik O. Rahaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, B., Biswas, C., Arya, R.K., Rahaman, S.O. (2020). Gut Microbiota and Risk for Atherosclerosis: Current Understanding of the Mechanisms. In: Biswas, D., Rahaman, S.O. (eds) Gut Microbiome and Its Impact on Health and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-47384-6_8

Download citation

Publish with us

Policies and ethics