Skip to main content

Gut Microbiome in Inflammation and Chronic Enteric Infections

  • Chapter
  • First Online:
Gut Microbiome and Its Impact on Health and Diseases

Abstract

Constant accumulation of our knowledge over the past few decades has established gut microflora as an essential part of the human body. A balanced gut flora helps its host to thrive, while an imbalanced gut flora can lead to many acute (e.g., diarrhea, vomiting, abdominal cramp) and chronic disorders (e.g., obesity, diabetes, cancer). Several approaches such as a healthy diet, fecal microbiota transplant (FMT), and bacteriophage therapy are being applied to improve intestinal dysbiosis. These strategies have improved the complications, but the long-term consequences are yet to discover. If the knowledge gap between the complex interaction among the human body, immune system, pathogens, and the gut microflora is explored completely, it will contribute to the remedy of many complicated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aditya, A., Alvarado-Martinez, Z., Nagarajan, V., Peng, M., & Biswas, D. (2019). Antagonistic effects of phenolic extracts of Chokeberry pomace on E. coli O157: H7 but not on probiotic and normal bacterial flora. Journal of Berry Research, 9, 459–472.

    Article  CAS  Google Scholar 

  • Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdova, A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science and Technology, 75, 105–114.

    Article  CAS  Google Scholar 

  • Akil, L., & Ahmad, H. A. (2011). Relationships between obesity and cardiovascular diseases in four southern states and Colorado. Journal of Health Care for the Poor and Underserved, 22, 61–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alipour, M., Zaidi, D., Valcheva, R., Jovel, J., Martínez, I., Sergi, C., Walter, J., Mason, A. L., Wong, G. K.-S., Dieleman, L. A., et al. (2016). Mucosal barrier depletion and loss of bacterial diversity are primary abnormalities in paediatric ulcerative colitis. Journal of Crohn’s and Colitis, 10, 462–471.

    Article  PubMed  Google Scholar 

  • Andreatti Filho, R. L., Higgins, J. P., Higgins, S. E., Gaona, G., Wolfenden, A. D., Tellez, G., & Hargis, B. M. (2007). Ability of bacteriophages isolated from different sources to reduce Salmonella enterica Serovar Enteritidis in vitro and in vivo. Poultry Science, 86, 1904–1909.

    Article  CAS  PubMed  Google Scholar 

  • Arrieta, M. C., Bistritz, L., & Meddings, J. B. (2006). Alterations in intestinal permeability. Gut, 55, 1512–1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashida, H., Ogawa, M., Kim, M., Mimuro, H., & Sasakawa, C. (2012). Bacteria and host interactions in the gut epithelial barrier. Nature Chemical Biology, 8, 36–45.

    Article  CAS  Google Scholar 

  • Association, A.D. (2004). Gestational diabetes mellitus. Diabetes Care Alex, 27, S88–S90.

    Article  Google Scholar 

  • Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K., et al. (2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 500, 232–236.

    Article  CAS  PubMed  Google Scholar 

  • Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718–15723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bajer, L., Kverka, M., Kostovcik, M., Macinga, P., Dvorak, J., Stehlikova, Z., Brezina, J., Wohl, P., Spicak, J., & Drastich, P. (2017). Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World Journal of Gastroenterology, 23, 4548–4558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakireva, A. V., & Zamyatnin, A. A. (2016). Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients, 8, 644.

    Article  PubMed Central  CAS  Google Scholar 

  • Balfour Sartor, R. (1997). Enteric microflora in IBD: Pathogens or commensals? Inflammatory Bowel Diseases, 3, 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Berg, R. D. (1996). The indigenous gastrointestinal microflora. Trends in Microbiology, 4, 430–435.

    Article  CAS  PubMed  Google Scholar 

  • Bertin, Y., Girardeau, J. P., Chaucheyras-Durand, F., Lyan, B., Pujos-Guillot, E., Harel, J., & Martin, C. (2011). Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environmental Microbiology, 13, 365–377.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, S., Kurland, M., Lydick, E., Locke, G. R. I., & Yawn, B. P. (2001). The Patient’s perspective of irritable bowel syndrome. The Journal of Family Practice, 50, 521.

    CAS  PubMed  Google Scholar 

  • Bornstein, J., & Lawrence, R. D. (1951). Two types of diabetes mellitus, with and without available plasma insulin. British Medical Journal, 1, 732.

    Article  PubMed Central  Google Scholar 

  • Borody, T. J., & Khoruts, A. (2012). Fecal microbiota transplantation and emerging applications. Nature Reviews. Gastroenterology & Hepatology, 9, 88–96.

    Article  CAS  Google Scholar 

  • Borody, T. J., Paramsothy, S., & Agrawal, G. (2013). Fecal microbiota transplantation: Indications, methods, evidence, and future directions. Current Gastroenterology Reports, 15, 337.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle, E. C., & Finlay, B. B. (2005). Leaky guts and lipid rafts. Trends in Microbiology, 13, 560–563.

    Article  CAS  PubMed  Google Scholar 

  • Bruewer, M., Luegering, A., Kucharzik, T., Parkos, C. A., Madara, J. L., Hopkins, A. M., & Nusrat, A. (2003). Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. Journal of Immunology, 171, 6164–6172.

    Article  CAS  Google Scholar 

  • Cammarota, G., Ianiro, G., Bibbò, S., & Gasbarrini, A. (2014). Fecal microbiota transplantation: A new old kid on the block for the management of gut microbiota-related disease. Journal of Clinical Gastroenterology, 48, S80–S84.

    Article  PubMed  Google Scholar 

  • Marcelo Campos (2017). Leaky gut: What is it, and what does it mean for you?

    Google Scholar 

  • Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761–1772.

    Article  CAS  PubMed  Google Scholar 

  • Cani, P. D., Delzenne, N. M., Amar, J., & Burcelin, R. (2008). Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie et Biologie, 56, 305–309.

    Article  CAS  PubMed  Google Scholar 

  • Carrillo, C. L., Atterbury, R. J., El-Shibiny, A., Connerton, P. L., Dillon, E., Scott, A., & Connerton, I. F. (2005). Bacteriophage therapy to reduce campylobacter jejuni colonization of broiler chickens. Applied and Environmental Microbiology, 71, 6554–6563.

    Article  CAS  Google Scholar 

  • Chakraborti, C. K. (2015). New-found link between microbiota and obesity. World Journal of Gastrointestinal Pathophysiology, 6, 110–119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chassaing, B., Koren, O., Carvalho, F. A., Ley, R. E., & Gewirtz, A. T. (2014). AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition. Gut, 63, 1069–1080.

    Article  CAS  PubMed  Google Scholar 

  • Cheadle, G. A., Costantini, T. W., Lopez, N., Bansal, V., Eliceiri, B. P., & Coimbra, R. (2013). Enteric glia cells attenuate cytomix-induced intestinal epithelial barrier breakdown. PLoS One, 8, e69042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chey, W. D., Kurlander, J., & Eswaran, S. (2015). Irritable bowel syndrome: A clinical review. JAMA, 313, 949–958.

    Article  CAS  PubMed  Google Scholar 

  • Chhibber, S., Kaur, S., & Kumari, S. (2008). Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. Journal of Medical Microbiology, 57, 1508–1513.

    Article  PubMed  Google Scholar 

  • Cohen, R. D., Woseth, D. M., Thisted, R. A., & Hanauer, S. B. (2000). A meta-analysis and overview of the literature on treatment options for left-sided ulcerative colitis and ulcerative proctitis. The American Journal of Gastroenterology, 95, 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  • Collado, M. C., Calabuig, M., & Sanz, Y. (2007). Differences between the fecal microbiota of coeliac infants and healthy controls. Current Issues in Intestinal Microbiology, 8, 9–14.

    CAS  PubMed  Google Scholar 

  • Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M., & Sanz, Y. (2009). Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. Journal of Clinical Pathology, 62, 264–269.

    Article  CAS  PubMed  Google Scholar 

  • Conrad, K., Roggenbuck, D., & Laass, M. W. (2014). Diagnosis and classification of ulcerative colitis. Autoimmunity Reviews, 13, 463–466.

    Article  CAS  PubMed  Google Scholar 

  • d’Herelle, F. (1931). Bacteriophage as a treatment in acute medical and surgical infections. Bulletin of the New York Academy of Medicine, 7, 329–348.

    PubMed  PubMed Central  Google Scholar 

  • Daliri, E. B.-M., & Lee, B. H. (2015). New perspectives on probiotics in health and disease. Food Science and Human Wellness, 4, 56–65.

    Article  Google Scholar 

  • Darfeuille-Michaud, A., Neut, C., Barnich, N., Lederman, E., Di Martino, P., Desreumaux, P., Gambiez, L., Joly, B., Cortot, A., & Colombel, J.-F. (1998). Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology, 115, 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  • de Vrieze, J. (2013). The promise of poop. Science, 341, 954–957.

    Article  PubMed  Google Scholar 

  • Duboc, H., Rajca, S., Rainteau, D., Benarous, D., Maubert, M.-A., Quervain, E., Thomas, G., Barbu, V., Humbert, L., Despras, G., et al. (2013). Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut, 62, 531–539.

    Article  CAS  PubMed  Google Scholar 

  • Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellekilde, M., Selfjord, E., Larsen, C. S., Jakesevic, M., Rune, I., Tranberg, B., Vogensen, F. K., Nielsen, D. S., Bahl, M. I., Licht, T. R., et al. (2014). Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Scientific Reports, 4, 5922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreyra, J. A., Wu, K. J., Hryckowian, A. J., Bouley, D. M., Weimer, B. C., & Sonnenburg, J. L. (2014). Gut microbiota-produced succinate Promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host & Microbe, 16, 770–777.

    Article  CAS  Google Scholar 

  • Ferrier, L., Bérard, F., Debrauwer, L., Chabo, C., Langella, P., Buéno, L., & Fioramonti, J. (2006). Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. The American Journal of Pathology, 168, 1148–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaboriau-Routhiau, V., Rakotobe, S., Lécuyer, E., Mulder, I., Lan, A., Bridonneau, C., Rochet, V., Pisi, A., De Paepe, M., Brandi, G., et al. (2009). The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity, 31, 677–689.

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi, A., Totino, V., Cacciotti, F., Iebba, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C., Pantanella, F., & Schippa, S. (2018). Rebuilding the gut microbiota ecosystem. International Journal of Environmental Research and Public Health, 15, 1679.

    Article  PubMed Central  CAS  Google Scholar 

  • Gareau, M. G., Sherman, P. M., & Walker, W. A. (2010). Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews. Gastroenterology & Hepatology, 7, 503–514.

    Article  Google Scholar 

  • Ghoshal, U. C., Shukla, R., Ghoshal, U., Gwee, K.-A., Ng, S. C., & Quigley, E. M. M. (2012). The gut microbiota and irritable bowel syndrome: Friend or foe? International Journal of Inflammation, 2012, 151085.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giel, J. L., Sorg, J. A., Sonenshein, A. L., & Zhu, J. (2010). Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS One, 5, e8740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hallen-Adams, H. E., & Suhr, M. J. (2016). Fungi in the healthy human gastrointestinal tract. Virulence, 8, 352–358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han, J.-L., and Lin, H.-L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World J Gastroenterol, 20, 17737–17745.

    Google Scholar 

  • Harris, L. A., Park, J. Y., Voltaggio, L., & Lam-Himlin, D. (2012). Celiac disease: Clinical, endoscopic, and histopathologic review. Gastrointestinal Endoscopy, 76, 625–640.

    Article  PubMed  Google Scholar 

  • Hawrelak, J. A. (2004). The causes of intestinal dysbiosis: A review. Alternative Medicine Review, 9, 18.

    Google Scholar 

  • Head, K. A., & Jurenka, J. S. (2003). Inflammatory bowel disease Part 1: Ulcerative colitis–pathophysiology and conventional and alternative treatment options. Alternative Medicine Review – A Journal of Clinical Therapeutics, 8, 247–283.

    Google Scholar 

  • Head, K., & Jurenka, J. S. (2004). Inflammatory bowel disease. Part II: Crohn’s disease–pathophysiology and conventional and alternative treatment options. Alternative Medicine Review – A Journal of Clinical Therapeutics, 9, 360–401.

    Google Scholar 

  • Hollander, D. (1986). Increased intestinal permeability in patients with Crohn’s disease and their relatives: A possible etiologic factor. Annals of Internal Medicine, 105, 883.

    Article  CAS  PubMed  Google Scholar 

  • Hota, S. S., McNamara, I., Jin, R., Kissoon, M., Singh, S., & Poutanen, S. M. (2019). Challenges establishing a multi-purpose fecal microbiota transplantation stool donor program in Toronto, Canada. The Official Journal of the Association of Medical Microbiology and Infectious Disease Canada, 4, 1–9.

    Article  Google Scholar 

  • Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science, 259, 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Huff, W. E., Huff, G. R., Rath, N. C., Balog, J. M., & Donoghue, A. M. (2002). Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poultry Science, 81, 1486–1491.

    Article  CAS  PubMed  Google Scholar 

  • Ibbotson, J. P., Lowes, J. R., Chahal, H., Gaston, J. S. H., Life, P., Kumararatne, D. S., Sharif, H., Alexander-Williams, J., & Allan, R. N. (1992). Mucosal cell-mediated immunity to mycobacterial, enterobacterial and other microbial antigens in inflammatory bowel disease. Clinical and Experimental Immunology, 87, 224–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery, I. B., O’Toole, P. W., Öhman, L., Claesson, M. J., Deane, J., Quigley, E. M. M., & Simrén, M. (2012). An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut, 61, 997–1006.

    Article  PubMed  Google Scholar 

  • Joseph, B., Przybilla, K., Stühler, C., Schauer, K., Slaghuis, J., Fuchs, T. M., & Goebel, W. (2006). Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. Journal of Bacteriology, 188, 556–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamdar, K., Khakpour, S., Chen, J., Leone, V., Brulc, J., Mangatu, T., Antonopoulos, D. A., Chang, E. B., Kahn, S. A., Kirschner, B. S., et al. (2016). Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease. Cell Host & Microbe, 19, 21–31.

    Article  CAS  Google Scholar 

  • Kerckhoffs, A. P., Samsom, M., van der Rest, M. E., de Vogel, J., Knol, J., Ben-Amor, K., & Akkermans, L. M. (2009). Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World Journal of Gastroenterology, 15, 2887–2892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khosravi, Y., Seow, S. W., Amoyo, A. A., Chiow, K. H., Tan, T. L., Wong, W. Y., Poh, Q. H., Sentosa, I. M. D., Bunte, R. M., Pettersson, S., et al. (2015). Helicobacter pylori infection can affect energy modulating hormones and body weight in germ free mice. Scientific Reports, 5, 8731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy, B. E., Mearin, F., Chang, L., Chey, W. D., Lembo, A. J., Simren, M., & Spiller, R. (2016). Bowel disorders. Gastroenterology, 150, 1393–1407.e5.

    Article  Google Scholar 

  • Lane, J. A., Murray, L. J., Harvey, I. M., Donovan, J. L., Nair, P., & Harvey, R. F. (2011). Randomised clinical trial: Helicobacter pylori eradication is associated with a significantly increased body mass index in a placebo-controlled study. Alimentary Pharmacology & Therapeutics, 33, 922–929.

    Article  CAS  Google Scholar 

  • Larsen, N., Vogensen, F. K., van den Berg, F. W. J., Nielsen, D. S., Andreasen, A. S., Pedersen, B. K., Al-Soud, W. A., Sørensen, S. J., Hansen, L. H., & Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 5, e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazar, V., Ditu, L.-M., Pircalabioru, G. G., Gheorghe, I., Curutiu, C., Holban, A. M., Picu, A., Petcu, L., & Chifiriuc, M. C. (2018). Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Frontiers in Immunology, 9, 1830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lender, N., Talley, N. J., Enck, P., Haag, S., Zipfel, S., Morrison, M., & Holtmann, G. J. (2014). Review article: Associations between helicobacter pylori and obesity–An ecological study. Alimentary Pharmacology & Therapeutics, 40, 24–31.

    Article  CAS  Google Scholar 

  • Leverentz, B., Conway, W. S., Alavidze, Z., Janisiewicz, W. J., Fuchs, Y., Camp, M. J., Chighladze, E., & Sulakvelidze, A. (2001). Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: A model study. Journal of Food Protection, 64, 1116–1121.

    Article  CAS  PubMed  Google Scholar 

  • Lewin, R. A. (2001). More on merde. Perspectives in Biology and Medicine, 44, 594–607.

    Article  CAS  PubMed  Google Scholar 

  • Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444, 1022–1023.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Liang, P., Li, Z., Wang, Y., Zhang, G., Gao, H., Wen, S., & Tang, L. (2015). Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis. Frontiers in Microbiology, 6, 692.

    PubMed  PubMed Central  Google Scholar 

  • Lin, D. M., Koskella, B., & Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8, 162–173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, H.-N., Wu, H., Chen, Y.-Z., Chen, Y.-J., Shen, X.-Z., & Liu, T.-T. (2017). Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis. Digestive and Liver Disease, 49, 331–337.

    Article  CAS  PubMed  Google Scholar 

  • Loc-Carrillo, C., & Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage, 1, 111–114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Logan, I., & Bowlus, C. L. (2010). The geoepidemiology of autoimmune intestinal diseases. Autoimmunity Reviews, 9, A372–A378.

    Article  PubMed  Google Scholar 

  • Lovell, R. M., & Ford, A. C. (2012). Global prevalence of and risk factors for irritable bowel syndrome: A meta-analysis. Clinical Gastroenterology and Hepatology, 10, 712–721.e4.

    Article  PubMed  Google Scholar 

  • Macfarlane, G. T., Steed, H., & Macfarlane, S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104, 305–344.

    CAS  PubMed  Google Scholar 

  • Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., et al. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63, 1275–1283.

    Article  CAS  PubMed  Google Scholar 

  • Maier, L., Barthel, M., Stecher, B., Maier, R. J., Gunn, J. S., & Hardt, W.-D. (2014). Salmonella typhimurium strain ATCC14028 requires H2-hydrogenases for growth in the gut, but not at systemic sites. PLoS One, 9, e110187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marasco, G., Di Biase, A. R., Schiumerini, R., Eusebi, L. H., Iughetti, L., Ravaioli, F., Scaioli, E., Colecchia, A., & Festi, D. (2016). Gut microbiota and celiac disease. Digestive Diseases and Sciences, 61, 1461–1472.

    Article  CAS  PubMed  Google Scholar 

  • Marchesi, J. R. (2014). The human microbiota and microbiome. Wallingford: CABI.

    Book  Google Scholar 

  • Marsh, M. N. (1997). Transglutaminase, gluten and celiac disease: Food for thought. Nature Medicine, 3, 725–726.

    Article  CAS  PubMed  Google Scholar 

  • Martin, H. M., Campbell, B. J., Hart, C. A., Mpofu, C., Nayar, M., Singh, R., Englyst, H., Williams, H. F., & Rhodes, J. M. (2004). Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer 11The authors thank Professor T. K. Korhonen (Division of General Microbiology, University of Helsinki, Finland), who kindly donated Escherichia coli IH11165; Professor J.-F. Colombel (Laboratoire de Recherche sur les Maladies Inflammatoire de l’Intestine, Centre Hospitalier Universitaire, Lille, France) and Professor A. Darfeuille-Michaud (Faculte de Pharmacie, Clermont-Ferrand, France), who kindly donated the Crohn’s disease ileal isolates LF10 and LF82; and Dr. Keith Leiper (Gastroenterology Unit, Royal Liverpool & Broadgreen University Hospitals Trust, Liverpool, UK) for his cooperation in obtaining colorectal tissue specimens. As a consequence of the work described herein, a patent application has been filed by the University of Liverpool regarding the use of soluble plantain fiber in Crohn’s disease. Gastroenterology, 127, 80–93.

    Article  CAS  PubMed  Google Scholar 

  • McKenney, P. T., & Pamer, E. G. (2015). From hype to hope: The gut microbiota in enteric infectious disease. Cell, 163, 1326–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McVay, C. S., Velásquez, M., & Fralick, J. A. (2007). Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial Agents and Chemotherapy, 51, 1934–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michail, S., Durbin, M., Turner, D., Griffiths, A. M., Mack, D. R., Hyams, J., Leleiko, N., Kenche, H., Stolfi, A., & Wine, E. (2012). Alterations in the gut microbiome of children with severe ulcerative colitis. Inflammatory Bowel Diseases, 18, 1799–1808.

    Article  PubMed  Google Scholar 

  • Mitchell, N. S., Catenacci, V. A., Wyatt, H. R., & Hill, J. O. (2011). Obesity: Overview of an epidemic. The Psychiatric Clinics of North America, 34, 717–732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyoshi, J., & Takai, Y. (2005). Molecular perspective on tight-junction assembly and epithelial polarity. Advanced Drug Delivery Reviews, 57, 815–855.

    Article  CAS  PubMed  Google Scholar 

  • Moal, V. L.-L., & Servin, A. L. (2014). Anti-infective activities of Lactobacillus strains in the human intestinal microbiota: From probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clinical Microbiology Reviews, 27, 167–199.

    Article  CAS  Google Scholar 

  • Mu, Q., Kirby, J., Reilly, C. M., & Luo, X. M. (2017). Leaky gut as a danger signal for autoimmune diseases. Frontiers in Immunology, 8, 598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mudd, J. C., & Brenchley, J. M. (2016). Gut mucosal barrier dysfunction, microbial dysbiosis, and their role in HIV-1 disease progression. The Journal of Infectious Diseases, 214, S58–S66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musso, G., Gambino, R., & Cassader, M. (2011). Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annual Review of Medicine, 62, 361–380.

    Article  CAS  PubMed  Google Scholar 

  • Ng, K. M., Ferreyra, J. A., Higginbottom, S. K., Lynch, J. B., Kashyap, P. C., Gopinath, S., Naidu, N., Choudhury, B., Weimer, B. C., Monack, D. M., et al. (2013). Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature, 502, 96–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NIH Human Microbiome Project (2018). Institute for Genome Sciences, University of Maryland School of Medicine, https://www.hmpdacc.org/overview/

  • O’Shea, E. F., Cotter, P. D., Stanton, C., Ross, R. P., & Hill, C. (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 152, 189–205.

    Article  PubMed  CAS  Google Scholar 

  • Ohkusa, T., Okayasu, I., Ogihara, T., Morita, K., Ogawa, M., & Sato, N. (2003). Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut, 52, 79–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes, G. C., Rayment, N. B., Hudspith, B. N., Petrovska, L., Lomer, M. C., Brostoff, J., Whelan, K., & Sanderson, J. D. (2012). Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterology and Motility, 24, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Pascal, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago, A., Martinez, X., Varela, E., Sarrabayrouse, G., Machiels, K., et al. (2017). A microbial signature for Crohn’s disease. Gut, 66, 813–822.

    Article  CAS  PubMed  Google Scholar 

  • Peng, M., Tabashsum, Z., Patel, P., Bernhardt, C., & Biswas, D. (2018). Linoleic acids overproducing Lactobacillus casei limits growth, survival, and virulence of Salmonella typhimurium and Enterohaemorrhagic Escherichia coli. Frontiers in Microbiology, 9, 2663.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petriz, B. A., Castro, A. P., Almeida, J. A., Gomes, C. P., Fernandes, G. R., Kruger, R. H., Pereira, R. W., & Franco, O. L. (2014). Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics, 15, 511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrof, E. O., Gloor, G. B., Vanner, S. J., Weese, S. J., Carter, D., Daigneault, M. C., Brown, E. M., Schroeter, K., & Allen-Vercoe, E. (2013). Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome, 1, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimentel, M., Chow, E. J., & Lin, H. C. (2000). Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. The American Journal of Gastroenterology, 95, 3503–3506.

    Article  CAS  PubMed  Google Scholar 

  • Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, V., Fralick, J. A., & Rolfe, R. D. (1999). Prevention of Clostridium difficile -induced ileocecitis with bacteriophage. Anaerobe, 5, 69–78.

    Article  Google Scholar 

  • Rastelli, M., Knauf, C., & Cani, P. D. (2018). Gut microbes and health: A focus on the mechanisms linking microbes, obesity, and related disorders. Obesity, 26, 792–800.

    Article  PubMed  Google Scholar 

  • Rios, A. C., Moutinho, C. G., Pinto, F. C., Del Fiol, F. S., Jozala, A., Chaud, M. V., Vila, M. M. D. C., Teixeira, J. A., & Balcão, V. M. (2016). Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiological Research, 191, 51–80.

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid, M. (2007). Prebiotics: The concept revisited. The Journal of Nutrition, 137, 830S–837S.

    Article  CAS  PubMed  Google Scholar 

  • Rolhion, N., & Chassaing, B. (2016). When pathogenic bacteria meet the intestinal microbiota. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371, 20150504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews. Immunology, 9, 313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salaheen, S., Jaiswal, E., Joo, J., Peng, M., Ho, R., OConnor, D., Adlerz, K., Aranda-Espinoza, J. H., & Biswas, D. (2016). Bioactive extracts from berry byproducts on the pathogenicity of Salmonella typhimurium. International Journal of Food Microbiology, 237, 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Santacruz, A., Collado, M. C., García-Valdés, L., Segura, M. T., Martín-Lagos, J. A., Anjos, T., Martí-Romero, M., Lopez, R. M., Florido, J., Campoy, C., et al. (2010). Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. The British Journal of Nutrition, 104, 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Sanz, Y., Sánchez, E., Marzotto, M., Calabuig, M., Torriani, S., & Dellaglio, F. (2007). Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunology and Medical Microbiology, 51, 562–568.

    Article  CAS  PubMed  Google Scholar 

  • Sanz, Y., Palma, G. D., & Laparra, M. (2011). Unraveling the ties between celiac disease and intestinal microbiota. International Reviews of Immunology, 30, 207–218.

    Article  PubMed  Google Scholar 

  • Sato, J., Kanazawa, A., Ikeda, F., Yoshihara, T., Goto, H., Abe, H., Komiya, K., Kawaguchi, M., Shimizu, T., Ogihara, T., et al. (2014). Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care, 37(8), 2343–2350.

    Article  CAS  PubMed  Google Scholar 

  • Saulnier, D. M., Riehle, K., Mistretta, T., Diaz, M., Mandal, D., Raza, S., Weidler, E. M., Qin, X., Coarfa, C., Milosavljevic, A., et al. (2011). Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology, 141, 1782–1791.

    Article  CAS  PubMed  Google Scholar 

  • Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology, 31, 107–133.

    Article  CAS  PubMed  Google Scholar 

  • Scaldaferri, F., Gerardi, V., Lopetuso, L. R., Del Zompo, F., Mangiola, F., Boškoski, I., Bruno, G., Petito, V., Laterza, L., Cammarota, G., et al. (2013). Gut microbial flora, prebiotics, and probiotics in IBD: Their current usage and utility. BioMed Research International, 2013, 435268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwan, A., Sjolin, S., Trottestam, U., & Aronsson, B. (1983). Relapsing clostridium difficile enterocolitis cured by rectal infusion of homologous faeces. The Lancet, 322, 845.

    Article  Google Scholar 

  • Sekirov, I., & Finlay, B. B. (2009). The role of the intestinal microbiota in enteric infection. The Journal of Physiology, 587, 4159–4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Q., Sun, W., Shan, X., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2017). Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicology Letters, 279, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Z.-H., Zhu, C.-X., Quan, Y.-S., Yang, Z.-Y., Wu, S., Luo, W.-W., Tan, B., & Wang, X.-Y. (2018). Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World Journal of Gastroenterology, 24, 5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26, 1135–1145.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J.-H., Sim, M., Lee, J.-Y., & Shin, D.-M. (2016). Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations. Journal of Physiological Anthropology, 35, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stappenbeck, T. S., Hooper, L. V., & Gordon, J. I. (2002). Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 15451–15455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugi, K., Musch, M. W., Chang, E. B., & Field, M. (2001). Inhibition of Na+,K+-ATPase by interferon γ down-regulates intestinal epithelial transport and barrier function. Gastroenterology, 120, 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  • Szebeni, B., Veres, G., Dezsofi, A., Rusai, K., Vannay, A., Bokodi, G., Vásárhelyi, B., Korponay-Szabó, I. R., Tulassay, T., & Arató, A. (2007). Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. Journal of Pediatric Gastroenterology and Nutrition, 45, 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Tabashsum, Z., Peng, M., Salaheen, S., Comis, C., & Biswas, D. (2018). Competitive elimination and virulence property alteration of Campylobacter jejuni by genetically engineered Lactobacillus casei. Food Control, 85, 283–291.

    Article  CAS  Google Scholar 

  • Tanji, Y., Shimada, T., Fukudomi, H., Miyanaga, K., Nakai, Y., & Unno, H. (2005). Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. Journal of Bioscience and Bioengineering, 100, 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Thiennimitr, P., Winter, S. E., Winter, M. G., Xavier, M. N., Tolstikov, V., Huseby, D. L., Sterzenbach, T., Tsolis, R. M., Roth, J. R., & Bäumler, A. J. (2011). Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proceedings of the National Academy of Sciences, 108, 17480–17485.

    Article  CAS  Google Scholar 

  • Timmer, A., McDonald, J. W., & MacDonald, J. K. (2007). Azathioprine and 6-mercaptopurine for maintenance of remission in ulcerative colitis. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD000478.pub2.

  • Transparency Market Research (TMR) (2019). Published on Apr 8, 2019, https://www.transparencymarketresearch.com/pressrelease/human-microbiome-market.htm

  • Viazis, S., Akhtar, M., Feirtag, J., & Diez-Gonzalez, F. (2011). Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiology, 28, 149–157.

    Article  PubMed  Google Scholar 

  • Walter, J. (2008). Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Applied and Environmental Microbiology, 74, 4985–4996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., McLoughlin, R. M., Cobb, B. A., Charrel-Dennis, M., Zaleski, K. J., Golenbock, D., Tzianabos, A. O., & Kasper, D. L. (2006). A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. The Journal of Experimental Medicine, 203, 2853–2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112, 1796–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellen, K. E., & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. The Journal of Clinical Investigation, 115, 1111–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, H. E., & Orlova, E. V. (2019). Bacteriophages: Their structural organisation and function. In R. Savva (Ed.), Bacteriophages: Perspect and future. London: IntechOpen.

    Google Scholar 

  • Wills, Q. F., Kerrigan, C., & Soothill, J. S. (2005). Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrobial Agents and Chemotherapy, 49, 1220–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, S.-R., Kim, Y.-J., Park, D.-Y., Jung, U.-J., Jeon, S.-M., Ahn, Y.-T., Huh, C.-S., McGregor, R., & Choi, M. S. (2013). Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring Md), 21, 2571–2578.

    Article  CAS  Google Scholar 

  • Zhang, X., Shen, D., Fang, Z., Jie, Z., Qiu, X., Zhang, C., Chen, Y., & Ji, L. (2013). Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One, 8, e71108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman, J. (2003). Extraintestinal symptoms in irritable bowel syndrome and inflammatory bowel diseases: Nature, severity, and relationship to gastrointestinal symptoms. Digestive Diseases and Sciences, 48, 743–749.

    Article  PubMed  Google Scholar 

  • Zou, J., Chassaing, B., Singh, V., Pellizzon, M., Ricci, M., Fythe, M. D., Kumar, M. V., & Gewirtz, A. T. (2018). Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host & Microbe, 23, 41–53.e4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Aditya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aditya, A., Galleher, C., Ad, Y., Coburn, M., Zweig, A. (2020). Gut Microbiome in Inflammation and Chronic Enteric Infections. In: Biswas, D., Rahaman, S.O. (eds) Gut Microbiome and Its Impact on Health and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-47384-6_6

Download citation

Publish with us

Policies and ethics