Skip to main content

Role of the Gut Flora in Human Nutrition and Gut Health

  • Chapter
  • First Online:
Gut Microbiome and Its Impact on Health and Diseases

Abstract

The human gastrointestinal (GI) tract is home to an immense number of microbe species that are constantly interacting with each other and with the host’s cells. This ecosystem, composed of bacteria, fungi, archaea, viruses, and the host’s cells, has been found to play an important role in maintaining the overall health of the host. Many of these microbes are responsible for producing metabolites that directly benefit the host by supplementing nutrition needs, improving the integrity of certain cellular structure, serving as cell signalers, and acting as an additional countermeasure against pathogens. In this chapter, we go over the important microbial groups that are present in the GI tract and have been known to impact human health. We will go over their functions, their metabolic processes, and the specific health-related outcomes that have been associated with the presence of these groups. Further, we go over some of the factors, conditions, and pressures that influence the diversity and quantity of specific microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azzam, H., & Malnick, S. (2015). Non-alcoholic fatty liver disease – The heart of the matter. World Journal of Hepatology, 7(10), 1369–1376. https://doi.org/10.4254/wjh.v7.i10.1369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey, M. T., Dowd, S. E., Galley, J. D., Hufnagle, A. R., Allen, R. G., & Lyte, M. (2011). Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity, 25(3), 397–407. https://doi.org/10.1016/j.bbi.2010.10.023.

    Article  CAS  PubMed  Google Scholar 

  • Begley, M., Hill, C., & Gahan, C. G. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72(3), 1729–1738.

    Article  CAS  Google Scholar 

  • Braune, A., & Blaut, M. (2016). Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. https://doi.org/10.1080/19490976.2016.1158395.

  • Bugaut, M. (1987). Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comparative Biochemistry and Physiology -- Part B: Biochemistry And. https://doi.org/10.1016/0305-0491(87)90433-0.

  • Campbell, S. C., Wisniewski, P. J., Noji, M., McGuinness, L. R., Häggblom, M. M., Lightfoot, S. A., & Kerkhof, L. J. (2016). The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS One, 11(3), e0150502. https://doi.org/10.1371/journal.pone.0150502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Zhang, H., Liu, W., & Zhang, W. (2014). The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS One, 9(8), e103799. https://doi.org/10.1371/journal.pone.0103799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumpitazi, B. (2018). Update on dietary management of childhood functional abdominal pain disoders. Gastroenterology Clinics of North America, 47(4), 715–726.

    Article  Google Scholar 

  • Clemente-Postigo, M., Queipo-Ortuño, M. I., Boto-Ordoñez, M., Coin-Aragüez, L., Roca-Rodriguez, M. D. M., Delgado-Lista, J., & Tinahones, F. J. (2013). Effect of acute and chronic red wine consumption on lipopolysaccharide concentrations. The American Journal of Clinical Nutrition, 97(5), 1053–1061. https://doi.org/10.3945/ajcn.112.051128.

    Article  CAS  PubMed  Google Scholar 

  • Connors, J., Dawe, N., & Van Limbergen, J. (2019). The role of succinate in the regulation of intestinal inflammation. Nutrients. https://doi.org/10.3390/nu11010025.

  • den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325–2340.

    Article  Google Scholar 

  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews: MMBR, 74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2011). Dietary fiber in foods: A review. Journal of Food Science and Technology, 49(3), 255–266.

    Article  Google Scholar 

  • Dominianni, C., Sinha, R., Goedert, J. J., Pei, Z., Yang, L., Hayes, R. B., et al. (2015). Sex, body mass index, and dietary Fiber intake influence the human gut microbiome. PLoS One, 10(4), e0124599. https://doi.org/10.1371/journal.pone.0124599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dongowski, G., Lorenz, A., & Anger, H. (2000). Degradation of pectins with different degrees of esterification by. Bacteroides Applied and Environmental Microbiology, 66(4), 1321–1327.

    Article  CAS  Google Scholar 

  • Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European Journal of Nutrition 54(3), 325–341. https://doi.org/10.1007/s00394-015-0852-y.

  • Elleuch, L., Shaaban, M., Smaoui, S., Mellouli, L., Karray-Rebai, I., Fourati-Ben Fguira, L., et al. (2010). Bioactive secondary metabolites from a new terrestrial streptomyces sp. TN262. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-009-8808-4.

  • El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D., & Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 11(7), 497.

    Article  Google Scholar 

  • Esakkiraj, P., Rajkumarbharathi, M., Palavesam, A., & Immanuel, G. (2010). Lipase production by Staphylococcus epidermidis CMST-Pi 1 isolated from the gut of shrimp Penaeus indicus. Annals of Microbiology, 60(1), 37–42.

    Article  CAS  Google Scholar 

  • Fadl, A. A., Sha, J., Klimpel, G. R., Olano, J. P., Niesel, D. W., & Chopra, A. K. (2005). Murein lipoprotein is a critical outer membrane component involved in Salmonella enterica serovar typhimurium systemic infection. Infection and Immunity, 73(2), 1081–1096. https://doi.org/10.1128/IAI.73.2.1081-1096.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetzner, S. (2012). Ring-cleaving dioxygenases with a cupin fold. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.07651-11.

  • Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4), 289–306.

    Article  Google Scholar 

  • Foster, J. A., Rinaman, L., & Cryan, J. F. (2017). Stress & the gut-brain axis: Regulation by the microbiome. Neurobiology of Stress, 7, 124–136. https://doi.org/10.1016/j.ynstr.2017.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritsch, C., Heinrich, V., Vogel, R. F., & Toelstede, S. (2016). Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiology. https://doi.org/10.1016/j.fm.2016.03.003.

  • Gaci, N., Borrel, G., Tottey, W., O'Toole, P. W., & Brugère, J. F. (2014). Archaea and the human gut: New beginning of an old story. World Journal of Gastroenterology, 20(43), 16062–16078.

    Article  CAS  Google Scholar 

  • García-Ruiz, A., González de Llano, D., Esteban-Fernández, A., Requena, T., Bartolomé, B., & Moreno-Arribas, M. V. (2014). Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiology, 44, 220–225. https://doi.org/10.1016/j.fm.2014.06.015.

    Article  CAS  PubMed  Google Scholar 

  • Gérard, P. (2013). Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens, 3(1), 14–24.

    Article  Google Scholar 

  • Glick-Bauer, M., & Yeh, M.-C. (2014). The health advantage of a vegan diet: Exploring the gut microbiota connection. Nutrients, 6(11), 4822–4838. https://doi.org/10.3390/nu6114822.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grajek, W., Olejnik, A., & Sip, A. (2005). Probiotics, prebiotics and antioxidants as functional foods. Acta Biochimica Polonica-English Edition, 52(3), 665.

    Article  CAS  Google Scholar 

  • Gramenzi, A., Caputo, F., Biselli, M., Kuria, F., Loggi, E., Andreone, P., & Bernardi, M. (2006). Review article: Alcoholic liver disease–pathophysiological aspects and risk factors. Alimentary Pharmacology & Therapeutics, 24(8), 1151–1161. https://doi.org/10.1111/j.1365-2036.2006.03110.x.

    Article  CAS  Google Scholar 

  • Gu, Q., & Li, P. (2016, July 13). Biosynthesis of vitamins by probiotic bacteria. Retrieved from https://www.intechopen.com/books/probiotics-and-prebiotics-in-human-nutrition-and-health/biosynthesis-of-vitamins-by-probiotic-bacteria

  • Hamaker, B. R., & Tuncil, Y. E. (2014). A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. Journal of Molecular Biology, 426(23), 3838–3850. https://doi.org/10.1016/j.jmb.2014.07.028.

    Article  CAS  PubMed  Google Scholar 

  • Hemarajata, P., & Versalovic, J. (2013). Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51. https://doi.org/10.1177/1756283X12459294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman, E. T., Lu, H., Yao, T., & Nakatsu, C. H. (2017). Microbial ecology along the gastrointestinal tract. Microbes and Environments, 32(4), 300–313.

    Article  Google Scholar 

  • Hoffmann, C., Dollive, S., Grunberg, S., Chen, J., Li, H., Wu, G. D., et al. (2013). Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS One, 8(6), e66019.

    Article  CAS  Google Scholar 

  • Hofmann, A. F., Hagey, L. R., & Krasowski, M. D. (2010). Bile salts of vertebrates: Structural variation and possible evolutionary significance. Journal of Lipid Research, 51(2), 226–246.

    Article  CAS  Google Scholar 

  • Hosseini, E., Grootaert, C., Verstraete, W., & Van de Wiele, T. (2011). Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews, 69(5), 245–258.

    Article  Google Scholar 

  • Howarth, N. C., Saltzman, E., & Roberts, S. B. (2001). Dietary fiber and weight regulation. Nutrition Reviews, 59(5), 129–139.

    Article  CAS  Google Scholar 

  • Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29), 8787–8803.

    Article  CAS  Google Scholar 

  • Jiang, T., Gao, X., Wu, C., Tian, F., Lei, Q., Bi, J., Xie, B., Wang, H. Y., Chen, S., & Wang, X. (2016). Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients, 8(3), 126. https://doi.org/10.3390/nu8030126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, M. E., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature reviews. Gastroenterology & Hepatology, 10(6), 352–361.

    CAS  Google Scholar 

  • Joyce, S. A., MacSharry, J., Casey, P. G., Kinsella, M., Murphy, E. F., Shanahan, F., & Gahan, C. G. (2014). Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proceedings of the National Academy of Sciences, 201323599.

    Google Scholar 

  • Jung, J. Y., Lee, S. H., Kim, J. M., Park, M. S., Bae, J.-W., Hahn, Y., & Jeon, C. O. (2011). Metagenomic analysis of kimchi, a traditional Korean fermented food. Applied and Environmental Microbiology, 77(7), 2264–2274. https://doi.org/10.1128/AEM.02157-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kekkonen, R. A., Kajasto, E., Miettinen, M., Veckman, V., Korpela, R., & Julkunen, I. (2008). Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-γ production. World Journal of Gastroenterology, 14(8), 1192–1203. https://doi.org/10.3748/wjg.14.1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo, L. E., Kitlinska, J. B., Tilan, J. U., Li, L., Baker, S. B., Johnson, M. D., & Zukowska, Z. (2007). Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nature Medicine, 13(7), 803–811. https://doi.org/10.1038/nm1611.

    Article  CAS  PubMed  Google Scholar 

  • Laparra, J. M., & Sanz, Y. (2010). Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research, 61(3), 219–225.

    Article  CAS  Google Scholar 

  • LeBlanc, J. G., Chain, F., Martín, R., Bermúdez-Humarán, L. G., Courau, S., & Langella, P. (2017). Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories, 16(1), 79.

    Article  Google Scholar 

  • Lima, G. P. P., Vianello, F., Corrêa, C. R., Campos, R. A. D. S., & Borguini, M. G. (2014). Polyphenols in fruits and vegetables and its effect on human health. Food and Nutrition Sciences, 1065–1082.

    Google Scholar 

  • Lima-Ojeda, J. M., Rupprecht, R., & Baghai, T. C. (2017). “I am I and my bacterial circumstances”: Linking gut microbiome, neurodevelopment, and depression. Frontiers in Psychiatry, 8. https://doi.org/10.3389/fpsyt.2017.00153.

  • Lovegrove, A., Edwards, C. H., De Noni, I., Patel, H., El, S. N., Grassby, T., Zielke, C., Ulmius, M., Nilsson, L., Butterworth, P. J., Ellis, P. R., & Shewry, P. R. (2015). Role of polysaccharides in food, digestion, and health. Critical Reviews in Food Science and Nutrition, 57(2), 237–253.

    Article  Google Scholar 

  • Lurie-Weinberger, M. N., & Gophna, U. (2015). Archaea in and on the human body: Health implications and future directions. PLoS Pathogens, 11(6), e1004833.

    Article  Google Scholar 

  • Ma, N., & Ma, X. (2019). Dietary amino acids and the gut-microbiome-immune axis: Physiological metabolism and therapeutic prospects. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/10.1111/1541-4337.12401.

  • Mach, N., & Fuster-Botella, D. (2017). Endurance exercise and gut microbiota: A review. Journal of Sport and Health Science, 6(2), 179–197.

    Article  Google Scholar 

  • Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in Genetics, 6, 148.

    Article  Google Scholar 

  • Mallett, A. K., & Rowland, I. R. (1990). Bacterial enzymes: Their role in the formation of mutagens and carcinogens in the intestine. Digestive Diseases, 8(2), 71–79.

    Article  CAS  Google Scholar 

  • Manrique, P., Dills, M., & Young, M. (2017). The human gut phage community and its implications for health and disease. Viruses, 9(6), 141.

    Article  Google Scholar 

  • Mar Rodríguez, M., Pérez, D., Javier Chaves, F., Esteve, E., Marin-Garcia, P., Xifra, G., Vendrell, J., Jové, M., Pamplona, R., Ricart, W., Portero-Otin, M., Chacón, M. R., & Fernández Real, J. M. (2015). Obesity changes the human gut mycobiome. Scientific Reports, 5, 14600. https://doi.org/10.1038/srep14600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara, N., & Hara, H. (2008). Voluntary running exercise alters microbiota composition and increases n-Butyrate concentration in the rat cecum. Bioscience, Biotechnology, and Biochemistry 72(2), 572–576. https://doi.org/10.1271/bbb.70474.

  • Messaoudi, M., Violle, N., Bisson, J.-F., Desor, D., Javelot, H., & Rougeot, C. (2011). Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2(4), 256–261. https://doi.org/10.4161/gmic.2.4.16108.

    Article  PubMed  Google Scholar 

  • Mika, A., Van Treuren, W., González, A., Herrera, J. J., Knight, R., & Fleshner, M. (2015). Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PLoS One, 10(5), e0125889. https://doi.org/10.1371/journal.pone.0125889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., & Lugli, G. A. (2017). The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews, 81(4), e00036–e00017.

    Article  Google Scholar 

  • Minot, S., Bryson, A., Chehoud, C., Wu, G. D., Lewis, J. D., & Bushman, F. D. (2013). Rapid evolution of the human gut virome. Proceedings of the National Academy of Sciences, 110(30), 12450–12455.

    Article  CAS  Google Scholar 

  • Monda, V., Villano, I., Messina, A., Valenzano, A., Esposito, T., Moscatelli, F., & Messina, G. (2017). Exercise modifies the gut microbiota with positive health effects. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/3831972.

  • Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7(3), 189–200.

    Article  Google Scholar 

  • Mudgil, D., & Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 61, 1–6.

    Article  CAS  Google Scholar 

  • Murphy, E. F., Cotter, P. D., Healy, S., Marques, T. M., O'sullivan, O., Fouhy, F., & Ross, P. R. (2010). Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut, gut-2010.

    Google Scholar 

  • Mutzel, M. (2014). Saccharomyces boulardii: The probiotic yeast that is great for your gut and immune system. Retrieved from https://mikemutzel.com/saccharomyces-boulardii-the-probiotic-yeast-that-is-great-for-your-gut-and-immune-system/

  • Parthasarathy, A., Cross, P. J., Dobson, R. C. J., Adams, L. E., Savka, M. A., & Hudson, A. O. (2018). A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2018.00029.

  • Parvez, S., Malik, K. A., Kang, S. A., & Kim, H.-Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6), 1171–1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x.

    Article  CAS  PubMed  Google Scholar 

  • Patel, S., Behara, R., Swanson, G. R., Forsyth, C. B., Voigt, R. M., & Keshavarzian, A. (2015). Alcohol and the intestine. Biomolecules, 5(4), 2573–2588. https://doi.org/10.3390/biom5042573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, M. L. (2009). Gut reaction: Environmental Effects on the Human Microbiota. Environmental Health Perspectives, 117(5), A198–A205.

    Article  Google Scholar 

  • Probiotics: In Depth. (2011, November 21). Retrieved December 10, 2018, from https://nccih.nih.gov/health/probiotics/introduction.htm

  • Raskov, H., Burcharth, J., & Pommergaard, H. C. (2017). Linking gut microbiota to colorectal cancer. Journal of Cancer. https://doi.org/10.7150/jca.20497.

  • Ridlon, J. M., Kang, D. J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47(2), 241–259.

    Article  CAS  Google Scholar 

  • Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de Los Reyes-Gavilán, C. G., & Salazar, N. (2016). Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology, 7, 185. https://doi.org/10.3389/fmicb.2016.00185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roager, H. M., & Licht, T. R. (2018). Microbial tryptophan catabolites in health and disease. Nature Communications. https://doi.org/10.1038/s41467-018-05470-4.

  • Rosselot, A. E., Hong, C. I., & Moore, S. R. (2016). Rhythm and bugs: Circadian clocks, gut microbiota, and enteric infections. Current Opinion in Gastroenterology, 32(1), 7–11. https://doi.org/10.1097/MOG.0000000000000227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rytioja, J., Hildén, K., Yuzon, J., Hatakka, A., de Vries, R. P., & Mäkelä, M. R. (2014). Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiology and Molecular Biology Reviews: MMBR, 78(4), 614–649.

    Article  Google Scholar 

  • Sam, Q. H., Chang, M. W., & Chai, L. Y. (2017). The fungal Mycobiome and its interaction with gut bacteria in the host. International Journal of Molecular Sciences, 18(2), 330. https://doi.org/10.3390/ijms18020330.

    Article  CAS  PubMed Central  Google Scholar 

  • Sánchez-Maldonado, A. F., Schieber, A., & Gänzle, M. G. (2011). Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of Applied Microbiology. https://doi.org/10.1111/j.1365-2672.2011.05141.x.

  • Scalbert, A., Morand, C., Manach, C., & Rémésy, C. (2002). Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy, 56(6), 276–282. https://doi.org/10.1016/S0753-3322(02)00205-6.

    Article  CAS  Google Scholar 

  • Schaab, M. R., Barney, B. M., & Francisco, W. A. (2006). Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis. Biochemistry. https://doi.org/10.1021/bi051571c.

  • Schmidt, K., Cowen, P. J., Harmer, C. J., Tzortzis, G., Errington, S., & Burnet, P. W. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 232(10), 1793–1801.

    Article  CAS  Google Scholar 

  • Selma, M. V., Espin, J. C., & Tomas-Barberan, F. A. (2009). Interaction between phenolics and gut microbiota: Role in human health. Journal of Agricultural and Food Chemistry, 57(15), 6485–6501.

    Article  CAS  Google Scholar 

  • Singh, A., Zapata, R. C., Pezeshki, A., Reidelberger, R. D., & Chelikani, P. K. (2018). Inulin fiber dose-dependently modulates energy balance, glucose tolerance, gut microbiota, hormones and diet preference in high-fat fed male rats. The Journal of Nutritional Biochemistry.

    Google Scholar 

  • Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–1435.

    Article  CAS  Google Scholar 

  • Stevens, J. F., & Maier, C. S. (2016). The chemistry of gut microbial metabolism of polyphenols. Phytochemistry Reviews. https://doi.org/10.1007/s11101-016-9459-z.

  • Stojković, D. S., Davidović, S., Živković, J., Glamočlija, J., Ćirić, A., Stevanović, M., et al. (2013). Comparative evaluation of antimutagenic and antimitotic effects of Morchella esculenta extracts and protocatechuic acid. Frontiers in Life Science. https://doi.org/10.1080/21553769.2014.901925.

  • Tasnim, N., Abulizi, N., Pither, J., Hart, M. M., & Gibson, D. L. (2017). Linking the gut microbial ecosystem with the environment: Does gut health depend on where we live? Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01935.

  • Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. The Biochemical Journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510.

    Article  CAS  PubMed  Google Scholar 

  • Tiso, M., & Schechet, A. N. (2015). Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One, 10(5), e0127490.

    Article  Google Scholar 

  • University of Jyvakyla. (2018). Endurance exercise training has beneficial effects on gut microbiota composition. Retrieved December 10, 2018, from https://www.sciencedaily.com/releases/2018/10/181015105451.htm

  • University of Michigan Health System. (2016). High-fiber diet keeps gut microbes from eating the colon’s lining, protects against infection, animal study shows. ScienceDaily.

    Google Scholar 

  • van de Pol, J. A., van Best, N., Mbakwa, C. A., Thijs, C., Savelkoul, P. H., Arts, I. C., Hornef, M. W., Mommers, M., & Penders, J. (2017). Gut colonization by methanogenic archaea is associated with organic dairy consumption in children. Frontiers in Microbiology, 8, 355. https://doi.org/10.3389/fmicb.2017.00355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinardell, M. P., & Mitjans, M. (2017). Lignins and their derivatives with beneficial effects on human health. International Journal of Molecular Sciences, 18(6), 1219. https://doi.org/10.3390/ijms18061219.

    Article  CAS  PubMed Central  Google Scholar 

  • Vorapreeda, T., Thammarongtham, C., & Laoteng, K. (2016). Integrative computational approach for genome-based study of microbial lipid-degrading enzymes. World Journal of Microbiology and Biotechnology, 32(7), 122.

    Article  Google Scholar 

  • Wexler, H. M. (2007). Bacteroides: The good, the bad, and the nitty-gritty. Clinical Microbiology Reviews, 20(4), 593–621.

    Article  CAS  Google Scholar 

  • Yoon, M. Y., & Yoon, S. S. (2018). Disruption of the gut ecosystem by antibiotics. Yonsei Medical Journal, 59(1), 4–12. https://doi.org/10.3349/ymj.2018.59.1.4.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S. L., Bai, L., Goel, N., Bailey, A., Jang, C. J., Bushman, F. D., & Sehgal, A. (2017). Human and rat gut microbiome composition is maintained following sleep restriction. Proceedings of the National Academy of Sciences of the United States of America, 114(8), E1564–E1571. https://doi.org/10.1073/pnas.1620673114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zabdiel Alvarado-Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alvarado-Martinez, Z., Filho, S., Mihalik, M., Rha, R., Snyder, M. (2020). Role of the Gut Flora in Human Nutrition and Gut Health. In: Biswas, D., Rahaman, S.O. (eds) Gut Microbiome and Its Impact on Health and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-47384-6_5

Download citation

Publish with us

Policies and ethics