Skip to main content

Effects of Diet on Human Gut Microbiome and Subsequent Influence on Host Physiology and Metabolism

  • Chapter
  • First Online:
Gut Microbiome and Its Impact on Health and Diseases
  • 1814 Accesses

Abstract

The gut microbiome is defined as the complex ecosystem of microorganisms that live in the gastrointestinal tract of humans and animals; it is composed of bacteria, viruses, fungi, and even archaea, though it primarily consists of bacteria. It plays a vital role in host physiology and metabolism, from immune function to organ development. The gut microbiome has been implicated as a factor in many diseases and has a hand in brain function, behavior, and mental health. Several factors contribute to the composition of the gut microbiome, including host genetics, diet, and environment, with early-life diet seeming to have a more permanent impact than diet later in life. Not only can diet alter an individual’s health through its influence on the gut microbiome, but also it can even impact future generations. This chapter will outline the ways in which specific foods, food groups, and diets impact the human gut microbiome and their subsequent effects on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora, T., Singh, S., & Sharma, R. (2013). Probiotics: Interaction with gut microbiome and antiobesity potential. Nutrition, 29(4), 591–596.

    CAS  PubMed  Google Scholar 

  • Azcrate-Peril, M., Ritter, A., & Savaiano, D. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci U S A, 114(3), E367–E375.

    Google Scholar 

  • Baer, D., Stote, K. S., Henderson, T., et al. (2014). The metabolizable energy of dietary resistant maltodextrin is variable and alters fecal microbiota composition in adult men. The Journal of Nutrition, 144(7), 1023–1029.

    CAS  PubMed  Google Scholar 

  • Berg, G., Erlacher, A., & Grube, M. (2015). The Edible plant microbiome: importance and health issues. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 419–426). Switzerland: Springer.

    Google Scholar 

  • Butt, M., & Sultan, T. (2011). Coffee and its consumption: Benefits and risks. Critical Reviews in Food Science and Nutrition, 51(4), 363–373.

    CAS  PubMed  Google Scholar 

  • Cabello-Olmo, M., Oneca, M., Torre, P., Sainz, N., et al. (2019). A fermented food product containing lactic acid bacteria protects ZDF rats from the development of Type 2 diabetes. Nutrients, 11(10), 2530.

    CAS  PubMed Central  Google Scholar 

  • Centanni, M., Lawley, B., Butts, C., et al. (2018). Bifidobacterium pseudolongum in the ceca of rats fed hi-maize starch has characteristics of a keystone species in Bifidobacterial blooms. Applied and Environmental Microbiology, 84(15), 1–13.

    Google Scholar 

  • Chamba, J. F., & Irlinger, F. (2004). Secondary and adjunct cultures. In P. Fox, P. McSweeney, T. Cogan, & T. Guinee (Eds.), Cheese: Chemistry, physics and microbiology (pp. 191–206). Amsterdam: Academic Press.

    Google Scholar 

  • Clarke, G., Stilling, R. M., & Kennedy, P. J. (2014). Minireview: gut microbiota: the neglected endocrine organ. Journal of Molecular Endocrinology, 28(8), 1221–1238.

    Google Scholar 

  • Cowan, T., Palmnäs, M., Yang, J., et al. (2014). Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. The Journal of Nutritional Biochemistry, 25(4), 489–495.

    CAS  PubMed  Google Scholar 

  • Davenport, R., Mizrahi-Man, O., Michelini, K., et al. (2014). Seasonal variation in human gut microbiome composition. PLoS One, 9(3), e90731.

    PubMed  PubMed Central  Google Scholar 

  • David, L., Maurice, C., Carmody, R., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.

    CAS  Google Scholar 

  • De Filippis, F., Pellegrini, N., Vannini, L., et al. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65, 1–10.

    Google Scholar 

  • Deehan, E., & Walter, J. (2016). The fiber gap and the disappearing gut microbiome: Implications for human nutrition. Trends in Endocrinology and Metabolism, 27(5), 239–242.

    CAS  PubMed  Google Scholar 

  • Del Chierico, F., Vernocchi, P., Dallapiccola, B., et al. (2014). Mediterranean diet and health: Food effects on gut microbiota and disease control. International Journal of Molecular Sciences, 5(7), 11678–11699.

    Google Scholar 

  • Dutheil, S., Ota, K., Wohleb, E., et al. (2016). High-fat diet induced anxiety and anhedonia: Impact on brain homeostasis and inflammation. Neuropsychopharmacology, 41(7), 1874–1887.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faderl, M., Noti, M., Corazza, N., et al. (2015). Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis. IUBMB Life, 67, 275–285.

    CAS  PubMed  Google Scholar 

  • Feng, W., Wang, H., Zhang, P., et al. (2017). Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochimica et Biophysica Acta, 1861(7), 1801–1812.

    CAS  PubMed  Google Scholar 

  • Francavilla, R., Calasso, M., & Calace, L. (2012). Effect of lactose on gut microbiota and metabolome of infants with cow’s milk allergy. Pediatric Allergy and Immunology, 23(5), 420–427.

    PubMed  Google Scholar 

  • Goldbohm, R. A., Hertog, M., Brants, H., et al. (1996). Consumption of black tea and cancer risk: A prospective cohort study. Journal of the National Cancer Institute, 88(2), 93–100.

    CAS  PubMed  Google Scholar 

  • González-Sarrías, A., Espín, J., & Tomás-Barberán, F. (2017). Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends in Food Science and Technology, 69, 281–288.

    Google Scholar 

  • Graf, D., Di Cagno, R., FÃ¥k, F., et al. (2015). Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease, 26(26164), 1–11.

    Google Scholar 

  • Guarner, F., & Malagelada, J. R. (2003). Gut flora in health and disease. The Lancet, 361, 512–519.

    Google Scholar 

  • Gurley, B., Miousse, I., Nookaew, I., et al. (2019). Decaffeinated green tea extract does not elicit hepatoxic effects and modulates the gut microbiome in lean B6C3F1 mice. Nutrients, 11(776), 1–14.

    Google Scholar 

  • Heiman, M., & Greenway, F. (2016). A healthy gastrointestinal microbiome is dependent on dietary diversity. Molecular Metabolism, 5(5), 317–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemarajata, P., & Versalovic, J. (2013). Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollman, P., Van Het Hof, K., Tijburg, L., et al. (2001). Addition of milk does not affect the absorption of flavonols from tea in man. Free Radical Research, 34, 293–300.

    Google Scholar 

  • ISAPP. (2016). ISAPP videos. https://isappscience.org/resources/isapp-videos/. Accessed 7 Jul 2019.

  • Jami, E., White, B., & Mizrahi, I. (2014). Potential role of the Bovine Rumen microbiome in modulating milk composition and feed efficiency. PLoS One, 9(1), e85423.

    PubMed  PubMed Central  Google Scholar 

  • Jandhyala, S., Talukdar, R., Subramanyam, C., et al. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29), 8787–8803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens, P. L. H. R., Penders, J., Hursel, R., Budding, A. E., Savelkoul, P. H. M., & Westerterp-Plantenga, M. S. (2016). Long-term green tea supplementation does not change the human gut microbiota. PLoS One, 11(4), e0153134.

    PubMed  PubMed Central  Google Scholar 

  • Jin, Y., Wu, S., Zeng, Z., et al. (2017). Effects of environmental pollutants on gut microbiota. Environmental Pollution, 222, 1–9.

    CAS  PubMed  Google Scholar 

  • Jones, M., Martoni, C. J., & Prakash, S. (2012a). Cholesterol lowering inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242 a randomized controlled trial. European Journal of Clinical Nutrition, 66, 1234–1241.

    CAS  PubMed  Google Scholar 

  • Jones, M., Martoni, J., Parent, M., et al. (2012b). Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. The British Journal of Nutrition, 107, 1505–1513.

    CAS  PubMed  Google Scholar 

  • Jy, K., & Ey, C. (2016). Changes in Korean adult females’ intestinal microbiota resulting from Kimchi Intake. Journal of Nutrition & Food Sciences, 06(02), 1–9.

    Google Scholar 

  • Kakumanu, M., Reeves, A., Anderson, D., et al. (2016). Honey bee gut microbiome is altered by in-hive pesticide exposures. Frontiers in Microbiology, 7, 1–11.

    Google Scholar 

  • Kashtanova, D., Popenko, A., Tkacheva, O., et al. (2016). Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition, 32(6), 620–627.

    PubMed  Google Scholar 

  • Kemperman, R., Gross, G., Mondot, S., et al. (2013). Impact of polyphenols from black tea and red wine grape juice on a gut model microbiome. Food Research International, 53(2), 659–669. join.

    CAS  Google Scholar 

  • Long, S., Gahan, G., & Joyce, S. (2017). Interactions between gut bacteria and bile in health and disease. Molecular Aspects of Medicine, 56, 54–65.

    CAS  PubMed  Google Scholar 

  • Lu, C., Sun, T., Li, Y., et al. (2017). Modulation of the gut microbiota by krill oil in mice fed a high-sugar high-fat diet. Frontiers in Microbiology, 8(905), 1–11.

    Google Scholar 

  • Luna, R. A., & Foster, J. A. (2015). Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Current Opinion in Biotechnology, 32, 35–41.

    CAS  PubMed  Google Scholar 

  • Ma, D., Wang, A. C., Parikh, I., et al. (2018). Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Scientific Reports, 8(6670), 1–10.

    Google Scholar 

  • Mao, Q., Manservisi, F., Panzacchi, S., et al. (2018). The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome. Environmental Health, 17(1), 50.

    PubMed  PubMed Central  Google Scholar 

  • Newell, C., Bomhof, M., Reimer, R., et al. (2016). Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Molecular Autism, 7(37), 2–6.

    Google Scholar 

  • Neyrinck, A., Hiel, S., Bouzin, C., et al. (2018). Wheat-derived arabinoxylan oligosaccharides with bifidogenic properties abolishes metabolic disorders induced by western diet in mice. The Journal of Nutrition, 144(7), 1023–1029.

    Google Scholar 

  • Nickerson, K., & McDonald, C. (2012). Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS One, 7(12), e52132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitsuji, K., Watanabe, S., Xiao, J., et al. (2018). Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Scientific Reports, 8(16173), 1–10.

    CAS  Google Scholar 

  • Ntemiri, A., Ribière, C., Stanton, C., et al. (2019). Retention of microbiota diversity by lactose-free milk in a mouse model of elderly gut microbiota. Journal of Agricultural and Food Chemistry, 67(7), 2098–2112.

    CAS  PubMed  Google Scholar 

  • O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7(7), 688–693.

    PubMed  PubMed Central  Google Scholar 

  • O’Shea, E., Cotter, P., Stanton, C., et al. (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 152(3), 189–205.

    PubMed  Google Scholar 

  • Olson, C., Vuong, H., Yano, J., et al. (2018). The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell, 173(7), 1728–1741.e1–e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey, K., Naik, S., & Vakil, B. (2015). Probiotics, prebiotics and synbiotics – A review. Journal of Food Science and Technology, 52(12), 7577–7587.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul Ross, R., Morgan, S., & Hill, C. (2002). Preservation and fermentation: Past, present and future. International Journal of Food Microbiology, 79(1), 3–16.

    PubMed  Google Scholar 

  • Piwowarek, K., LipiÅ„ska, E., Hać-SzymaÅ„czuk, E., et al. (2018). Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology, 102(2), 515–538.

    CAS  PubMed  Google Scholar 

  • Piwowarski, J. P., Kiss, A. K., Granica, S., et al. (2015). Urolithins, gut microbiota-derived metabolites of ellagitannins, inhibit LPS-induced inflammation in RAW 264.7 murine macrophages. Molecular Nutrition & Food Research, 59(11), 2168–2177.

    CAS  Google Scholar 

  • Quigley, E. (2013). Gut bacteria in health and disease. Gastroenterología y Hepatología, 9(9), 560–569.

    Google Scholar 

  • Quigley, L., O’Sullivan, O., Stanton, C., et al. (2013a). The complex microbiota of raw milk. FEMS Microbiology Reviews, 37(5), 664–698.

    CAS  PubMed  Google Scholar 

  • Quigley, L., McCarthy, R., O’Sullivan, O., et al. (2013b). The microbial content of raw and pasteurized cow milk as determined by molecular approaches. Journal of Dairy Science, 96(8), 4928–4937.

    CAS  PubMed  Google Scholar 

  • Rettedal, A., Altermann, E., Roy, N., et al. (2019). The effects of unfermented and fermented cow and sheep milk on the gut microbiota. Frontiers in Microbiology, 10(458), 1–12.

    Google Scholar 

  • Richardson, T. (1978). The hypocholesteremic effect of milk – A review. Journal of Food Protection, 41(3), 226–235.

    CAS  PubMed  Google Scholar 

  • Rissato, S., Galhiane, M., de Almeida, M., et al. (2007). Multiresidue determination of pesticides in honey samples by gas chromatography–mass spectrometry and application in environmental contamination. Food Chemistry, 101(4), 1719–1726.

    CAS  Google Scholar 

  • Robertson, R., Seira Oriach, C., Murphy, K., et al. (2017). Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain, Behavior, and Immunity, 59, 21–37.

    CAS  PubMed  Google Scholar 

  • Ryan, L., & Petit, S. (2010). Addition of whole, semiskimmed, and skimmed bovine milk reduces the total antioxidant capacity of black tea. Nutrition Research, 40(1), 14–20.

    Google Scholar 

  • Saad, M. J. A., Santos, A., & Prada, P. O. (2016). Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology, 31(4), 283–293.

    CAS  PubMed  Google Scholar 

  • Sandoval, D., & Seeley, R. (2010). The microbes made me eat it. Science, 328(5975), 179–180.

    CAS  PubMed  Google Scholar 

  • Sasaki, A., de Vega, W., Sivanathan, S., et al. (2014). Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring. The Journal of Neuroscience, 272, 92–101.

    CAS  Google Scholar 

  • Saxe, L. (2019). Fermented Foods are up to 149%: As long as they’re unfamiliar. Forbes. Available via https://www.forbes.com/sites/lizzysaxe/2019/02/06/fermented-foods-are-up-149-percent-as-long-as-theyre-unfamiliar/#59cac643673f. Accessed 7 Jul 2019.

  • Seo, D.-B., Jeong, H., Cho, D., et al. (2018). Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. Journal of Medicinal Food, 18(5), 1–8.

    Google Scholar 

  • Shen, S., & Wong, C. (2016). Bugging inflammation: role of the gut microbiota. Clinical and Translational Immunology, 5, e72.

    PubMed  PubMed Central  Google Scholar 

  • Shen, L., Liu, L., & Ji, H.-F. (2017). Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food & Nutrition Research, 61(1), 1361780.

    Google Scholar 

  • Sommer, F., & Bäckhed, F. (2013). The gut microbiota — masters of host development and physiology. Nature Reviews Microbiology, 11, 227–238.

    CAS  PubMed  Google Scholar 

  • Sun, H., Chen, Y., Cheng, M., et al. (2018). The Modulatory effect of polyphenols from green tea, oolong tea, and black tea on human intestinal microbiota in vitro. Journal of Food Science and Technology, 55(1), 399–407.

    CAS  PubMed  Google Scholar 

  • Tannock, G., Lawley, B., Munro, K., et al. (2012). Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Applied and Environmental Microbiology, 79(9), 3040–3048.

    Google Scholar 

  • Trinchese, G., Cavaliere, G., Canani, R. B., et al. (2015). Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. The Journal of Nutritional Biochemistry, 26(11), 1136–1146.

    CAS  PubMed  Google Scholar 

  • van het Hof, K., Kivits, G., Tijburg, W., et al. (1998). Bioavailability of catechins from tea the effect of milk. European Journal of Clinical Nutrition, 52, 356–359.

    Google Scholar 

  • Van Doorn, G., Wuillemin, D., & Spence, C. (2014). Does the colour of the mug influence the taste of the coffee? Flavour, 3(10), 1–7.

    Google Scholar 

  • Veiga, P., Pons, N., Agrawal, A., et al. (2014). Changes of the human gut microbiome induced by a fermented milk product. Scientific Reports, 4(1), 6328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakuma, R., Sagar, G. V., Sreeramulu, D., et al. (2005). Addition of milk does not alter the antioxidant activity of black tea. Annals of Nutrition & Metabolism, 49(3), 189–195.

    Google Scholar 

  • Vitaglione, P., Mazzone, G., Lembo, V., et al. (2019). Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis. Journal of Nutritional Science, 8(e15), 1–11.

    Google Scholar 

  • Wahlqvist, M. (2015). Lactose nutrition in lactase nonpersisters. Asia Pacific Journal of Clinical Nutrition, 24(1), S21–S25.

    CAS  PubMed  Google Scholar 

  • Wahlström, A., Sayin, S., Marschall, H.-U., et al. (2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism, 24(1), 41–50.

    PubMed  Google Scholar 

  • Wang, Y., & Ho, C.-T. (2009). Polyphenolic chemistry of tea and coffee: A century of progress. Journal of Agricultural and Food Chemistry, 57(18), 8109–8114.

    CAS  PubMed  Google Scholar 

  • Wang, Z., Zhang, W., Wang, B., et al. (2018a). Influence of Bactrian camel milk on the gut microbiota. Journal of Dairy Science, 101(7), 5758–5769.

    CAS  PubMed  Google Scholar 

  • Wang, J., Tang, L., Hongyuan, Z., et al. (2018b). Long term treatment with green tea polyphenols modifies the gut microbiome of female sprague dawley rats. The Journal of Nutritional Biochemistry, 56, 55–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weitkunat, K., Stuhlmann, C., Postel, A., et al. (2017). Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Scientific Reports, 7(6109), 1–13.

    CAS  Google Scholar 

  • Wen, Y., He, Q., Ding, J., et al. (2017). Cow, yak, and camel milk diets differentially modulated the systemic immunity and fecal microbiota of rats. Science Bulletin, 62(6), 405–414.

    CAS  Google Scholar 

  • Wu, G., Compher, C., Chen, E., et al. (2016). Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut, 65(1), 63–72.

    CAS  PubMed  Google Scholar 

  • Yang, J., Martínez, I., Walter, J., et al. (2013). In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe, 23, 74–81.

    CAS  PubMed  Google Scholar 

  • Yu, H.-S., Lee, N.-K., Choi, A.-J., et al. (2019). Anti-inflammatory potential of probiotic strain Weissella cibaria JW15 isolated from Kimchi through regulation of NF-kB and MAPKs pathways in LPS-Induced RAW 264.7 cells. Journal of Microbiology and Biotechnology, 29(7), 1022–1032.

    CAS  PubMed  Google Scholar 

  • Zhang, X., Zhang, M., Ho, C.-T., et al. (2018). Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. Journal of Functional Foods, 46, 268–277.

    CAS  Google Scholar 

  • Zimmer, J., Lange, B., Frick, J.-S., et al. (2012). A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition, 66(1), 53–60.

    CAS  PubMed  Google Scholar 

  • Zoetendal, E., Akkermans, A., Akkermans-van Vliet, W., et al. (2001). The host genotype affects the bacterial community in the human gastrointestinal tract. Microbial Ecology in Health and Disease, 13(3), 129–134.

    Google Scholar 

Download references

Acknowledgments

This book chapter was partially supported by the Korean-American Scientists and Engineers Association (KSEA) Young Investigator Grant (YIG) awarded to Si Hong Park. The Building University-Industry linkages through Learning and Discovery (BUILD) supported to authors Bryna Rackerby, Daria Van De Grift, and Si Hong Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Hong Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rackerby, B., Van De Grift, D., Kim, J.H., Park, S.H. (2020). Effects of Diet on Human Gut Microbiome and Subsequent Influence on Host Physiology and Metabolism. In: Biswas, D., Rahaman, S.O. (eds) Gut Microbiome and Its Impact on Health and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-47384-6_3

Download citation

Publish with us

Policies and ethics