Skip to main content

An Energy-Efficient Method with Dynamic GPS Sampling Rate for Transport Mode Detection and Trip Reconstruction

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12109)

Abstract

This paper presents a novel approach for trip reconstruction and transport mode detection. While traditional methods use a fixed GPS sampling rate, our proposed method uses a dynamic rate to avoid unnecessary sensing and waste of energy. We determine a time for each sampling that gives an interesting trade-off using a particle filter. Our approach uses as input a map, including transit network circuits and schedules, and produces as output the estimated road segments and transport modes used. The effectiveness of our approach is shown empirically using real map and transit network data. Our technique achieves an accuracy of 96.3% for a 15.0% energy consumption reduction (compared to the existing technique that has the closest accuracy) and an accuracy of 85.6% for a 56.0% energy consumption reduction.

Keywords

  • Particle filter
  • Transport mode detection
  • Trip reconstruction
  • Energy efficiency
  • Mobile device
  • GPS
  • Dynamic sampling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-47358-7_42
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-47358-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Bierlaire, M., Chen, J., Newman, J.: A probabilistic map matching method for smartphone GPS data. Transp. Res. Part C: Emerg. Technol. 26, 78–98 (2013)

    CrossRef  Google Scholar 

  2. Bolbol, A., Cheng, T., Tsapakis, I., Haworth, J.: Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification. Comput. Environ. Urban Syst. 36(6), 526–537 (2012). https://doi.org/10.1016/j.compenvurbsys.2012.06.001

    CrossRef  Google Scholar 

  3. Byon, Y.J., Liang, S.: Real-time transportation mode detection using smartphones and artificial neural networks: performance comparisons between smartphones and conventional global positioning system sensors. J. Intell. Transp. Syst. 18(3), 264–272 (2014). https://doi.org/10.1080/15472450.2013.824762

    CrossRef  Google Scholar 

  4. Cappé, O., Moulines, E., Rydén, T.: Inference in hidden markov models. In: Proceedings of EUSFLAT Conference, pp. 14–16 (2009)

    Google Scholar 

  5. Carroll, A., Heiser, G., et al.: An analysis of power consumption in a smartphone. In: USENIX Annual Technical Conference, vol. 14, pp. 21–21 (2010)

    Google Scholar 

  6. Chandra, S., Bharti, A.K.: Speed distribution curves for pedestrians during walking and crossing. Procedia Soc. Behav. Sci. 104, 660–667 (2013). https://doi.org/10.1016/j.sbspro.2013.11.160

    CrossRef  Google Scholar 

  7. Cheng, W., Erfani, S.M., Zhang, R., Ramamohanarao, K.: Markov dynamic subsequence ensemble for energy-efficient activity recognition. In: Proceedings of MobiQuitous 2017, Australia, p. 10 (2017). https://doi.org/10.1145/3144457.3144470

  8. Chung, E.H., Shalaby, A.: Transportation planning and technology a trip reconstruction tool for GPS-based personal travel surveys. Transp. Plan. Technol. 28(5), 381–401 (2005)

    CrossRef  Google Scholar 

  9. Dabiri, S., Heaslip, K.: Inferring transportation modes from GPS trajectories using a convolutional neural network. Transp. Res. Part C Emerg. Technol. 86, 360–371 (2018). https://doi.org/10.1016/j.trc.2017.11.021

    CrossRef  Google Scholar 

  10. Fang, S., Zimmermann, R.: EnAcq: energy-efficient GPS trajectory data acquisition based on improved map matching. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 221–230 (2011). https://doi.org/10.1145/2093973.2094004

  11. Li, X., Yuan, F., Lindqvist, J.: Feasibility of duty cycling gps receiver for trajectory-based services. In: 13th IEEE Annual Consumer Communications and Networking Conference (CCNC) (2016). https://doi.org/10.7282/T3VM4F56

  12. Patterson, Z., Fitzsimmons, K.: DataMobile: smartphone travel survey experiment. Transp. Res. Rec. J. Transp. Res. Board 15(2594), 35–43 (2016)

    CrossRef  Google Scholar 

  13. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 54 (2011). https://doi.org/10.1145/2093973.2093982

  14. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  15. Xiao, G., Juan, Z., Gao, J.: Travel mode detection based on neural networks and particle swarm optimization. Information 6(3), 522–535 (2015). https://doi.org/10.3390/info6030522

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaël Champagne Gareau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Milot, J., Champagne Gareau, J., Beaudry, É. (2020). An Energy-Efficient Method with Dynamic GPS Sampling Rate for Transport Mode Detection and Trip Reconstruction. In: Goutte, C., Zhu, X. (eds) Advances in Artificial Intelligence. Canadian AI 2020. Lecture Notes in Computer Science(), vol 12109. Springer, Cham. https://doi.org/10.1007/978-3-030-47358-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47358-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47357-0

  • Online ISBN: 978-3-030-47358-7

  • eBook Packages: Computer ScienceComputer Science (R0)