Skip to main content

Measurement of Oxidative Stress Status in Human Populations: A Critical Need for a Metabolomic Profiling

  • Chapter
  • First Online:
Measuring Oxidants and Oxidative Stress in Biological Systems

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 34))

Abstract

Oxidative stress (OS) is characteristic of a diverse set of physiological and pathophysiological states. For example, human health problems associated with oxidative stress include Parkinson’s disease, Alzheimer’s disease, myocardial infarction, cancer, diabetes, various inflammations, renal failure, and atherosclerosis as well as aging. It has become routine and convenient to screen body fluids, including blood (serum or plasma), saliva, and urine, as well as exhaled breath for small molecules that are biomarkers of oxidative stress to ascertain the oxidative stress status (OSS) of a particular targeted organ or the whole body. Unfortunately, circulating levels of oxidation products and/or antioxidants often do not truly represent the tissue/organ/whole body state of oxidative stress or antioxidant status due to the diverse nature of oxidative reactions, metabolic status, and tissue retention. Hence, the analyst has to bear several important points in mind while ascertaining the state of oxidative stress or antioxidant status by measuring one or two chosen biomarkers in one or two selected sampling sites at any given time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai Q, Gao YT, Shu XO, Yang G, Milne G, Cai Q, Wen W, Rothman N, Cai H, Li H, et al. Oxidative stress, obesity, and breast cancer risk: results from the Shanghai Women’s Health Study. J Clin Oncol. 2009;27(15):2482–8.

    PubMed  PubMed Central  Google Scholar 

  2. Kharitonov SA, Barnes PJ. Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers. 2002;7:1–32.

    CAS  PubMed  Google Scholar 

  3. Kharitonov SA, Barnes PJ. Exhaled markers of inflammation. Curr Opin Allergy Clin Immunol. 2001;1:217–24.

    CAS  PubMed  Google Scholar 

  4. Phillips M, Cataneo RN, Cheema T, Greenberg J. Increased breath biomarkers of oxidative stress in diabetes mellitus. Clin Chim Acta. 2004;344:189–94.

    CAS  PubMed  Google Scholar 

  5. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Rahbari-Oskoui F, Wong C. Volatile markers of breast cancer in the breath. Breast J. 2003;9:184–91.

    PubMed  Google Scholar 

  6. Phillips M, Cataneo RN, Greenberg J, Grodman R, Gunawardena R, Naidu A. Effect of oxygen on breath markers of oxidative stress. Eur Respir J. 2003;21:48–51.

    CAS  PubMed  Google Scholar 

  7. Phillips M, Cataneo RN, Greenberg J, Grodman R, Salazar M. Breath markers of oxidative stress in patients with unstable angina. Heart Dis. 2003;5:95–9.

    CAS  PubMed  Google Scholar 

  8. Pryor WA. Measurement of oxidative stress status in humans. Cancer Epidemiol Biomark Prev. 1993;2:289–92.

    CAS  Google Scholar 

  9. Pryor WA, Godber SS. Oxidative stress status: an introduction. Free Radic Biol Med. 1991;10:173.

    CAS  PubMed  Google Scholar 

  10. Pryor WA, Godber SS. Noninvasive measures of oxidative stress status in humans. Free Radic Biol Med. 1991;10(3–4):177–84.

    CAS  PubMed  Google Scholar 

  11. Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Rahbari-Oskoui F. Increased oxidative stress in younger as well as in older humans. Clin Chim Acta. 2003;328:83–6.

    CAS  PubMed  Google Scholar 

  12. Phillips M, Greenberg J, Cataneo RN. Effect of age on the profile of alkanes in normal human breath. Free Radic Res. 2000;33:57–63.

    CAS  PubMed  Google Scholar 

  13. Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood). 2002;227:671–82.

    CAS  Google Scholar 

  14. Knez WL, Jenkins DG, Coombes JS. Oxidative stress in half and full Ironman triathletes. Med Sci Sports Exerc. 2007;39:283–8.

    CAS  PubMed  Google Scholar 

  15. Morrow JD, Harris TM, Roberts LJ II. Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal Biochem. 1990;184:1–10.

    CAS  PubMed  Google Scholar 

  16. Lucantoni G, Pietraforte D, Matarrese P, Gambardella L, Metere A, Paone G, Bianchi EL, Straface E. The red blood cell as a biosensor for monitoring oxidative imbalance in chronic obstructive pulmonary disease: an ex vivo and in vitro study. Antioxid Redox Signal. 2006;8:1171–82.

    CAS  PubMed  Google Scholar 

  17. Cutler RG, Plummer J, Chowdhury K, Heward C. Oxidative stress profiling: part II. Theory, technology, and practice. Ann N Y Acad Sci. 2005;1055:136–58.

    CAS  PubMed  Google Scholar 

  18. Noguchi N, Niki E. Phenolic antioxidants: a rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radic Biol Med. 2000;28:1538–46.

    CAS  PubMed  Google Scholar 

  19. Yin H, Porter NA. New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxid Redox Signal. 2005;7:170–84.

    CAS  PubMed  Google Scholar 

  20. Floyd RA. Development of a sensitive analysis for 8-hyrdoxy-2′deoxyguanosine. Free Radic Res Comm. 1990;8:139–41.

    CAS  Google Scholar 

  21. Moller L, Hofer T, Zeisig M. Methodological considerations and factors affecting 8-hydroxy2-deoxyguanosine analysis. Free Radic Res. 1998;28:511–24.

    Google Scholar 

  22. Uppu RM, Cuerto R, Squadrito GL, Salgo MG, Pryor WA. Competitive reactions of peroxynitrite with 2′-deoxyguanosine and 7,8-dihydro-8-oxo-2′-deoxyguanosine (8- oxodG): relevance to the formation of 8-oxodG in DNA exposed to peroxynitrite. Free Radic Biol Med. 1996;21:407–11.

    CAS  PubMed  Google Scholar 

  23. Robinson I, de Serna DG, Gutierrez A, Schade DS. Vitamin E in humans: an explanation of clinical trial failure. Endocr Pract. 2006;12:576–82.

    PubMed  Google Scholar 

  24. Thomson MJ, Puntmann V, Kaski JC. Atherosclerosis and oxidant stress: the end of the road for antioxidant vitamin treatment? Cardiovasc Drugs Ther. 2007;21:95–210.

    Google Scholar 

  25. Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol. 2008;101:14D–9D.

    CAS  PubMed  Google Scholar 

  26. Sousa BC, Pitt AR, Spickett CM. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic Biol Med. 2017;11:294–308.

    Google Scholar 

  27. Pan J, Keffer J, Emami A, Ma X, Lan R, Goldman R, Chung FL. Acrolein-derived DNA adduct formation in human colon cancer cells: its role in apoptosis induction by docosahexaenoic acid. Chem Res Toxicol. 2009;22:798–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamura S, Tsukahara H, Ueno M, Maeda M, Kawakami H, Sekine K, Mayumi M. Evaluation of a urinary multi-parameter biomarker set for oxidative stress in children, adolescents and young adults. Free Radic Res. 2006;40:1198–205.

    CAS  PubMed  Google Scholar 

  29. Gruber J, Tang SY, Jenner AM, Mudway I, Blomberg A, Behndig A, Kasiman K, Lee CY, Seet RC, Zhang W, Chen C, Kelly FJ, Halliwell B. Allantoin in human plasma, serum and nasal lining fluids as a biomarker of oxidative stress; avoiding artifacts and establishing real in vivo concentrations. Antioxid Redox Signal. 2009;11:1767–76.

    CAS  PubMed  Google Scholar 

  30. Ihara H, Matsumoto T, Morita Y, Hirano A, Okada M, Hashizume N, Shioji I, Yoshimura H. Diurnal variation of biopyrrin excretion in random urine specimens is not corrected by creatinine. J Clin Lab Anal. 2007;21:1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kunii H, Ishikawa K, Yamaguchi T, Komatsu N, Ichihara T, Maruyama Y. Bilirubin and its oxidative metabolite biopyrrins in patients with acute myocardial infarction. Fukushima J Med Sci. 2009;55:39–51.

    CAS  PubMed  Google Scholar 

  32. Ienaga K, Nakamura K, Fujisawa T, Fukunaga Y, Nihei H, Narita M, Tomino Y, Sanaka T, Aoyagi K, Nakano K, et al. Urinary excretion of creatol, an in vivo biomarker of hydroxyl radical, in patients with chronic renal failure. Ren Fail. 2007;29:279–83.

    CAS  PubMed  Google Scholar 

  33. Nakamura K, Ienaga K, Nakano K, Nakai M, Nakamura Y, Hasegawa G, Sawada M, Kondo M, Mori H, Kanatsuna T. Diabetic renal failure and serum accumulation of the creatinine oxidative metabolites creatol and methylguanidine. Nephron. 1996;73:520–5.

    CAS  PubMed  Google Scholar 

  34. Al Mardini H, Leonard J, Bartlett K, Lloyd S, Record CO. Effect of methionine loading and endogenous hypermethioninaemia on blood mercaptans in man. Clin Chim Acta. 1988;176:83–9.

    CAS  PubMed  Google Scholar 

  35. Castro GD, Díaz Gómez MI, Castro JA. Dimethyldisulfide formation during trichloromethyl radical attack on methionine. Biochem Pharmacol. 1989;38:4145–7.

    CAS  PubMed  Google Scholar 

  36. Couch RD, Dailey A, Zaidi F, Navarro K, Forsyth CB, Mutlu E, Engen PA, Keshavarzian A. Alcohol induced alterations to the human fecal VOC metabolome. PLoS One. 2015;10:e0119362.

    PubMed  PubMed Central  Google Scholar 

  37. Wagner CA. Hydrogen sulfide: a new gaseous signal molecule and blood pressure regulator. J Nephrol. 2009;22:173–6.

    CAS  PubMed  Google Scholar 

  38. Yang G, An SS, Ji Y, Zhang W, Pei Y. Hydrogen sulfide signaling in oxidative stress and aging development. Oxidative Med Cell Longev. 2015;2015:357824.

    Google Scholar 

  39. Lapolla A, Reitano R, Seraglia R, Sartore G, Ragazzi E, Traldi P. Evaluation of advanced glycation end products and carbonyl compounds in patients with different conditions of oxidative stress. Mol Nutr Food Res. 2005;49:685–90.

    CAS  PubMed  Google Scholar 

  40. Niles JC, Wishnok JS, Tannenbaum SR. Spiroiminodihydantoin and guanidinohydantoin are the dominant products of 8-oxoguanosine oxidation at low fluxes of peroxynitrite: mechanistic studies with 18O. Chem Res Toxicol. 2004;17:1510–9.

    CAS  PubMed  Google Scholar 

  41. Niles JC, Wishnok JS, Tannenbaum SR. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide. 2006;14:109–21.

    CAS  PubMed  Google Scholar 

  42. Jena NR, Mishra PC. Formation of ring-opened and rearranged products of guanine: mechanisms and biological significance. Free Radic Biol Med. 2012;53:81–94.

    CAS  PubMed  Google Scholar 

  43. Blasco H, Garcon G, Patin F, Veyrat-Durebex C, Boyer J, Devos D, Vourc'h P, Andres CR, Corcia P. Panel of oxidative stress and inflammatory biomarkers in ALS: a pilot study. Can J Neurol Sci. 2017;44:90–5.

    PubMed  Google Scholar 

  44. Hobbs CA, Cleves MA, Zhao W, Melnyk S, James SJ. Congenital heart defects and maternal biomarkers of oxidative stress. Am J Clin Nutr. 2005;82:598–604.

    CAS  PubMed  Google Scholar 

  45. Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80:361–554.

    CAS  PubMed  Google Scholar 

  46. Pryor WA, Wang K, Bermudez E. Cholesterol ozonation products as biomarkers for ozone exposure in rats. Biochem Biophys Res Commun. 1992;188:618–23.

    CAS  PubMed  Google Scholar 

  47. Sathishkumar K, Xi X, Martin R, Uppu RM. Cholesterol secoaldehyde, an ozonation product of cholesterol, induces amyloid aggregation and apoptosis in murine GT1-7 hypothalamic neurons. J Alzheimers Dis. 2007;11:261–74.

    CAS  PubMed  Google Scholar 

  48. Raghavamenon AC, Gernapudi R, Babu S, D’Auvergne O, Murthy SN, Kadowitz PJ, Uppu RM. Intracellular oxidative stress and cytotoxicity in rat primary cortical neurons exposed to cholesterol secoaldehyde. Biochem Biophys Res Commun. 2009;386:170–4.

    CAS  PubMed  Google Scholar 

  49. Sathishkumar K, Gao X, Raghavamenon AC, Parinandi N, Pryor WA, Uppu RM. Cholesterol secoaldehyde induces apoptosis in H9c2 cardiomyoblasts through reactive oxygen species involving mitochondrial and death receptor pathways. Free Radic Biol Med. 2009;47:548–58.

    CAS  PubMed  Google Scholar 

  50. Brinkhorst J, Nara SJ, Pratt DA. Hock cleavage of cholesterol 5alpha-hydroperoxide: an ozone-free pathway to the cholesterol ozonolysis products identified in arterial plaque and brain tissue. J Am Chem Soc. 2008;130:12224–5.

    CAS  PubMed  Google Scholar 

  51. Tomono S, Miyoshi N, Sato K, Ohba Y, Ohshima H. Formation of cholesterol ozonolysis products through an ozone-free mechanism mediated by the myeloperoxidase-H2O2-chloride system. Biochem Biophys Res Commun. 2009;383:222–7.

    CAS  PubMed  Google Scholar 

  52. Prapainop K, Wentworth P Jr. A shotgun proteomic study of the protein corona associated with cholesterol and atheronal-B surface-modified quantum dots. Eur J Pharm Biopharm. 2011;77:353–9.

    CAS  PubMed  Google Scholar 

  53. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ II. A series of prostaglandin F2-like compounds are produced in vivo in humans by a noncyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990;87:9383–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Il’yasova D, Morrow JD, Ivanova A, Wagenknecht LE. Epidemiological marker for oxidant status: comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6-dihydro-15-F2t-isoprostane. Ann Epidemiol. 2004;14:793–7.

    PubMed  Google Scholar 

  55. Rimón R, Airaksinen MM, Kari I, Gynther J, Venäläinen E, Heikkilä L, Ryyppö J, Palo J. Pinoline, a beta-carboline derivative in the serum and cerebrospinal fluid of patients with schizophrenia. Ann Clin Res. 1984;16:171–5.

    PubMed  Google Scholar 

  56. Uppu RM, Winston GW, Pryor WA. Reactions of peroxynitrite with aldehydes as probes for the reactive intermediates responsible for biological nitration. Chem Res Toxicol. 1997;10:1331–7.

    CAS  PubMed  Google Scholar 

  57. Saimanen I, Rahkola D, Kuosmanen V, Kärkkäinen J, Selander T, Holopainen A, Aspinen S, Eskelinen M. Nitrotyrosine (NT), a nitrosative stress biomarker, plasma concentrations in gallstone disease and cancer patients. Anticancer Res. 2019;39:809–14.

    CAS  PubMed  Google Scholar 

  58. Mutahi TT, Edagwa BJ, Fronczek FR, Uppu RM. N-Acetyl-5-chloro-3-nitro-L-tyrosine ethyl ester. Acta Crystallogr Sect E Struct Rep Online. 2012;68(Pt 9):o2810–1.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Institutes of Health (NIH) through the National Institute of General Medical Science (NIGMS) Grant 5 P2O GM103424-17 and the US Department of Education (US DoE; Title III, HBGI Part B grant number P031B040030). Its contents are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, or US DoE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao M. Uppu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uppu, R.M., Woods, D., Parinandi, N.L. (2020). Measurement of Oxidative Stress Status in Human Populations: A Critical Need for a Metabolomic Profiling. In: Berliner, L., Parinandi, N. (eds) Measuring Oxidants and Oxidative Stress in Biological Systems. Biological Magnetic Resonance, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-47318-1_8

Download citation

Publish with us

Policies and ethics