Skip to main content

‘Ozone-Specific’ Oxysterols and Neuronal Cell Signaling

  • Chapter
  • First Online:
Measuring Oxidants and Oxidative Stress in Biological Systems

Abstract

Cholesterol is an important plasma membrane component, precursor for hormones and vitamins, and is a regulator of metabolism. However, the oxidized forms of cholesterol (oxysterols) can cause toxicity and induce pro-inflammatory responses and are implicated in chronic degenerative diseases. In general, oxysterols with a modified sidechain serve in various physiological and/or pathophysiological functions. The source of these oxysterols may be exogenous, from the food we ingest, or endogenous, as the by-product of normal cholesterol metabolism, free radical-mediated oxidation, or autoxidation of cholesterol. This chapter discusses the nature of oxysterols as oxidized cholesterol species, oxysterol signaling and pathophysiology, oxysterols and neurodegenerative diseases, ozone-oxidized cholesterol as a new class of oxysterols, detection of 3β-hydroxy-5-oxo-5,6-secocholestan-6-al (cholesterol secoaldehyde, ChSeco or atheronal-A) at sites of inflammation and evidence for in vivo existence, cytotoxicity of ChSeco and pro-inflammatory actions in the cells of mammalian systems, and ChSeco signaling in neuronal cells and implications in Alzheimer’s pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leoni V. Oxysterols as markers of neurological disease—a review. Scand J Clin Lab Invest. 2009;69:22–5.

    CAS  PubMed  Google Scholar 

  2. Poli G, Sottero B, Gargiulo S, Leonarduzzi G. Cholesterol oxidation products in the vascular remodeling due to atherosclerosis. Mol Aspects Med. 2009;30:180–9.

    CAS  PubMed  Google Scholar 

  3. Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G. Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry. Curr Med Chem. 2009;16:685–705.

    CAS  PubMed  Google Scholar 

  4. Vejux A, Lizard G. Cytotoxic effects of oxysterols associated with human diseases: Induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis. Mol Aspects Med. 2009;30:153–70.

    CAS  PubMed  Google Scholar 

  5. Beck KR, Kanagaratnam S, Kratschmar DV, Birk J, Yamaguchi H, Sailer AW, Seuwen K, Odermatt A. Enzymatic interconversion of the oxysterols 7β,25-dihydroxycholesterol and 7-keto,25-hydroxycholesterol by 11β-hydroxysteroid dehydrogenase type 1 and 2. J Steroid Biochem Mol Biol. 2019;190:19–28.

    CAS  PubMed  Google Scholar 

  6. Brown AJ, Jessup W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med. 2009;30:111–22.

    CAS  PubMed  Google Scholar 

  7. Diczfalusy U. Analysis of cholesterol oxidation products in biological samples. J AOAC Int. 2004;87:467–73.

    CAS  PubMed  Google Scholar 

  8. Gill S, Chow R, Brown AJ. Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog Lipid Res. 2008;47:391–404.

    CAS  PubMed  Google Scholar 

  9. Haigh WG, Lee SP. Identification of oxysterols in human bile and pigment gallstones. Gastroenterology. 2001;121:118–23.

    CAS  PubMed  Google Scholar 

  10. Kurschus FC, Wanke F. EBI2—sensor for dihydroxycholesterol gradients in neuroinflammation. Biochimie. 2018;153:52–5.

    CAS  PubMed  Google Scholar 

  11. Smith LL. Review of progress in sterol oxidations: 1987–1995. Lipids. 1996;31:453–87.

    CAS  PubMed  Google Scholar 

  12. Smith LL. Oxygen, oxysterols, ouabain, and ozone: a cautionary tale. Free Radic Biol Med. 2004;37:318–24.

    CAS  PubMed  Google Scholar 

  13. Bjorkhem I, Diczfalusy U. Oxysterols: friends, foes, or just fellow passengers? Arterioscler Thromb Vasc Biol. 2002;22:734–42.

    CAS  PubMed  Google Scholar 

  14. Bjorkhem I, Starck L, Andersson U, Lutjohann D, von Bahr S, Pikuleva I, Babiker A, Diczfalusy U. Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: abnormal levels of 24S- and 27-hydroxycholesterol. J Lipid Res. 2001;42:366–71.

    CAS  PubMed  Google Scholar 

  15. Garenc C, Julien P, Levy E. Oxysterols in biological systems: the gastrointestinal tract, liver, vascular wall and central nervous system. Free Radic Res. 2010;44:47–73.

    CAS  PubMed  Google Scholar 

  16. Luu B, Moog C. Oxysterols: biological activities and physicochemical studies. Biochimie. 1991;73:1317–20.

    CAS  PubMed  Google Scholar 

  17. Olkkonen VM, Lehto M. Oxysterols and oxysterol binding proteins: role in lipid metabolism and atherosclerosis. Ann Med. 2004;36:562–72.

    CAS  PubMed  Google Scholar 

  18. Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80:361–554.

    CAS  PubMed  Google Scholar 

  19. Vejux A, Malvitte L, Lizard G. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res. 2008;41:545–56.

    CAS  PubMed  Google Scholar 

  20. Töröcsik D, Szanto A, Nagy L. Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Mol Aspects Med. 2009;30:134–52.

    PubMed  Google Scholar 

  21. Edwards PA, Kennedy MA, Mak PA. LXRs: oxysterol—activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul Pharmacol. 2002;38:249–56.

    CAS  PubMed  Google Scholar 

  22. Makishima M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci. 2005;97:177–83.

    CAS  PubMed  Google Scholar 

  23. Baranowski M. Biological role of liver X receptors. J Physiol Pharmacol. 2008;59(Suppl. 7):31–55.

    PubMed  Google Scholar 

  24. Liu Y, Chang YS, Fang FD. [Liver X receptor: crucial mediator in lipid and carbohydrate metabolism]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2007;29:430–5.

    Google Scholar 

  25. Beltowski J. Liver X receptors (LXR) as therapeutic targets in dyslipidemia. Cardiovasc Ther. 2008;26:297–316.

    CAS  PubMed  Google Scholar 

  26. Bjorkhem I, Cedazo-Minguez A, Leoni V, Meaney S. Oxysterols and neurodegenerative diseases. Mol Aspects Med. 2009;30:171–9.

    PubMed  Google Scholar 

  27. Bjorkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med. 2006;260:493–508.

    CAS  PubMed  Google Scholar 

  28. Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142:1–28.

    CAS  PubMed  Google Scholar 

  29. Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;24:806–15.

    PubMed  Google Scholar 

  30. Kolsch H, Lutjohann D, von Bergmann K, Heun R. The role of 24S-hydroxycholesterol in Alzheimer’s disease. J Nutr Health Aging. 2003;7:37–41.

    CAS  PubMed  Google Scholar 

  31. Taylor-Clark TE, Undem BJ. Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. J Physiol. 2010;588:423–33.

    CAS  PubMed  Google Scholar 

  32. Wolkoff P, Clausen PA, Larsen K, Hammer M, Larsen ST, Nielsen GD. Acute airway effects of ozone-initiated d-limonene chemistry: importance of gaseous products. Toxicol Lett. 2008;181:171–6.

    CAS  PubMed  Google Scholar 

  33. Fauroux B, Sampil M, Quenel P, Lemoullec Y. Ozone: a trigger for hospital pediatric asthma emergency room visits. Pediatr Pulmonol. 2000;30:41–6.

    CAS  PubMed  Google Scholar 

  34. Lin S, Bell EM, Liu W, Walker RJ, Kim NK, Hwang SA. Ambient ozone concentration and hospital admissions due to childhood respiratory diseases in New York State, 1991–2001. Environ Res. 2008;108:42–7.

    CAS  PubMed  Google Scholar 

  35. Loomis DP, Borja-Aburto VH, Bangdiwala SI, Shy CM. Ozone exposure and daily mortality in Mexico City: a time-series analysis. Res Rep Health Eff Inst. 1996;(75):1–37; discussion 39–45.

    Google Scholar 

  36. Peng KJ, Huang YS, An LN, Han XQ, Zhang JG, Wang QL, Sun J, Wang SR. Effect of ozone produced from antibody-catalyzed water oxidation on pathogenesis of atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2006;38:417–22.

    CAS  Google Scholar 

  37. Srebot V, Gianicolo EA, Rainaldi G, Trivella MG, Sicari R. Ozone and cardiovascular injury. Cardiovasc Ultrasound. 2009;7:30.

    PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Huang W, London SJ, Song G, Chen G, Jiang L, Zhao N, Chen B, Kan H. Ozone and daily mortality in Shanghai, China. Environ Health Perspect. 2006;114:1227–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Giamalva D, Church DF, Pryor WA. A comparison of the rates of ozonation of biological antioxidants and oleate and linoleate esters. Biochem Biophys Res Commun. 1985;133:773–9.

    CAS  PubMed  Google Scholar 

  40. Giamalva DH, Church DF, Pryor WA. Effect of bilayer structure on the rates of reaction of ozone with polyunsaturated fatty acids in phosphatidylcholine liposomes. Chem Res Toxicol. 1988;1:144–5.

    CAS  PubMed  Google Scholar 

  41. Postlethwait EM, Cueto R, Velsor LW, Pryor WA. O3-induced formation of bioactive lipids: estimated surface concentrations and lining layer effects. Am J Physiol. 1998;274:L1006–16.

    CAS  PubMed  Google Scholar 

  42. Pryor WA. How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts? Free Radic Biol Med. 1992;12:83–8.

    CAS  PubMed  Google Scholar 

  43. Pryor WA. Ozone in all its reactive splendor. J Lab Clin Med. 1993;122:483–6.

    CAS  PubMed  Google Scholar 

  44. Pryor WA. Mechanisms of radical formation from reactions of ozone with target molecules in the lung. Free Radic Biol Med. 1994;17:451–65.

    CAS  PubMed  Google Scholar 

  45. Pryor WA, Church DF. Aldehydes, hydrogen peroxide, and organic radicals as mediators of ozone toxicity. Free Radic Biol Med. 1991;11:41–6. Review. Erratum in: Free Radic Biol Med 12:451 (1992).

    CAS  PubMed  Google Scholar 

  46. Pryor WA, Uppu RM. A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles. J Biol Chem. 1993;268:3120–6.

    CAS  PubMed  Google Scholar 

  47. Pryor WA, Das B, Church DF. The ozonation of unsaturated fatty acids: aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity. Chem Res Toxicol. 1991;4:341–8.

    CAS  PubMed  Google Scholar 

  48. Pryor WA, Wang K, Bermudez E. Cholesterol ozonation products as biomarkers for ozone exposure in rats. Biochem Biophys Res Commun. 1992;188:618–23.

    CAS  PubMed  Google Scholar 

  49. Pryor WA, Squadrito GL, Friedman M. The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med. 1995;19:935–41.

    CAS  PubMed  Google Scholar 

  50. Pryor WA, Bermudez E, Cueto R, Squadrito GL. Detection of aldehydes in bronchoalveolar lavage of rats exposed to ozone. Fundam Appl Toxicol. 1996;34:148–56.

    CAS  PubMed  Google Scholar 

  51. Squadrito GL, Uppu RM, Cueto R, Pryor WA. Production of the Criegee ozonide during the ozonation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine liposomes. Lipids. 1992;27:955–8.

    CAS  PubMed  Google Scholar 

  52. Uppu RM, Pryor WA, W.A. Ozonation of lysosome in the presence of oleate in reverse micelles of sodium di-2-ethylhexylsulfosuccinate. Biochem Biophys Res Commun. 1992;187:473–9.

    CAS  PubMed  Google Scholar 

  53. Uppu RM, Pryor WA. The reactions of ozone with proteins and unsaturated fatty acids in reverse micelles. Chem Res Toxicol. 1994;7:47–55.

    CAS  PubMed  Google Scholar 

  54. Uppu RM, Cueto R, Squadrito GL, Pryor WA. What does ozone react with at the air lung interface-model studies using human red-blood-cell membranes? Arch Biochem Biophys. 1995;319:257–66.

    CAS  PubMed  Google Scholar 

  55. Wang K, Bermudez E, Pryor WA. The ozonation of cholesterol: separation and identification of 2,4-dinitrophenylhydrazine derivatization products of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al. Steroids. 1993;58:225–9.

    CAS  PubMed  Google Scholar 

  56. Frampton MW, Pryor WA, Cueto R, Cox C, Morrow PE, Utell MJ. Ozone exposure increases aldehydes in epithelial lining fluid in human lung. Am J Respir Crit Care Med. 1999;159:1134–7.

    CAS  PubMed  Google Scholar 

  57. Frampton MW, Pryor WA, Cueto R, Cox C, Morrow PE, Utell MJ. Aldehydes (nonanal and hexanal) in rat and human bronchoalveolar lavage fluid after ozone exposure. Res Rep Health Eff Inst. 1999;1–15; discussion 17–8.

    Google Scholar 

  58. Pulfer MK, Murphy RC. Formation of biologically active oxysterols during ozonolysis of cholesterol present in the lung surfactant. J Biol Chem. 2004;279:26331–8.

    CAS  PubMed  Google Scholar 

  59. Pulfer MK, Taube C, Gelfand E, Murphy RC. Ozone exposure in vivo and formation of biologically active oxysterols in the lung. J Pharmacol Exp Ther. 2005;312:256–65.

    CAS  PubMed  Google Scholar 

  60. Smith LL. Cholesterol autoxidation. New York: Plenum Press; 1981. See also the references therein.

    Google Scholar 

  61. Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davis KAJ. It’s a gas, man! Free Radic Biol Med. 2006;291:491–511.

    Google Scholar 

  62. Wentworth P Jr, Nieva J, Takeuchi C, Galve R, Wentworth AD, Dilley RB, DeLaria GA, Saven A, Babior BM, Janda KD, Eschenmoser A, Lerner RA. Evidence for ozone formation in human atherosclerotic arteries. Science. 2003;302:1053–6.

    CAS  PubMed  Google Scholar 

  63. Zhang Q, Powers ET, Nieva J, Huff ME, Dendle MA, Bieschke J, Glabe CG, Eschenmoser A, Wentworth P Jr, Lerner RA, Kelley JW. Metabolite-initiated protein misfolding may trigger Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101:4752–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P Jr, Lerner RA, Kelly JW. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol. 2006;2:249–53.

    CAS  PubMed  Google Scholar 

  65. Dantas LS, Chaves-Filho AB, Coelho FR, Genaro-Mattos TC, Tallman KA, Porter NA, Augusto O, Miyamoto S. Cholesterol secosterol aldehyde adduction and aggregation of Cu, Zn-superoxide dismutase: potential implications in ALS. Redox Biol. 2018;19:105–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tomono S, Miyoshi N, Ito M, Higashi T, Ohshima H. A highly sensitive LC-ESI-MS/MS method for the quantification of cholesterol ozonolysis products secosterol-A and secosterol-B after derivatization with 2-hydrazino-1-methylpyridine. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879:2802–8.

    CAS  PubMed  Google Scholar 

  67. Wentworth P Jr, McDunn JE, Wentworth AD, Tekeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, Babior BM, Eschenmoser A, Lerner RA. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 2002;298:2195–9.

    CAS  PubMed  Google Scholar 

  68. Wentworth P Jr, Wentworth AD, Zhu X, Wilson IA, Janda KD, Eschenmoser A, Lerner RA. Evidence for the production of trioxygen species during antibody-catalyzed chemical modification of antigens. Proc Natl Acad Sci U S A. 2003;100:1490–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Babior BM, Tekeuchi C, Ruedi J, Gutierrez A, Wentworth P Jr. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci U S A. 2003;100:3031–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Marx J. Ozone may be secret ingredient in plaques’ inflammatory stew. Science. 2004;302:965.

    Google Scholar 

  71. Drahl C. Probing for in-body ozone. Chem Eng News. 2009;87:40–2.

    Google Scholar 

  72. Kettle AJ, Clark BM, Winterbourn CC. Superoxide converts indigo carmine to isatin sulfonic acid: implications for the hypothesis that neutrophils produce ozone. J Biol Chem. 2004;279:18521–5.

    CAS  PubMed  Google Scholar 

  73. Kettle AJ, Winterbourn CC. Do neutrophils produce ozone? An appraisal of current evidence. Biofactors. 2005;24:41–5.

    CAS  PubMed  Google Scholar 

  74. Rangan V, Perumal TE, Sathishkumar K, Uppu RM. Oxidation of indigo carmine by peroxynitrite (±CO2): implications for the hypothesis on ozone production by neutrophils. In: 45th annual meeting of the Society of Toxicology, San Diego, CA, March 5–9, 2006.

    Google Scholar 

  75. Yamashita K, Miyoshi T, Arai T, Endo N, Itoh H, Makino K, Mizugishik K, Uchiyama T, Sasada M. Ozone production by amino acids contributes to killing of bacteria. Proc Natl Acad Sci U S A. 2008;105:16912–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Brinkhorst J, Nara SJ, Pratt DA. Hock cleavage of cholesterol 5alpha-hydroperoxide: an ozone-free pathway to the cholesterol ozonolysis products identified in arterial plaque and brain tissue. J Am Chem Soc. 2008;130:12224–5.

    CAS  PubMed  Google Scholar 

  77. Uemi M, Ronsein GE, Miyamoto S, Medeiros MH, Di Mascio P. Generation of cholesterol carboxaldehyde by the reaction of singlet molecular oxygen [O2 (1Δg)] as well as ozone with cholesterol. Chem Res Toxicol. 2009;22:875–84.

    CAS  PubMed  Google Scholar 

  78. Tomono S, Miyoshi N, Sato K, Ohba Y, Ohshima H. Formation of cholesterol ozonolysis products through an ozone-free mechanism mediated by the myeloperoxidase-H2O2-chloride system. Biochem Biophys Res Commun. 2009;383:222–7.

    CAS  PubMed  Google Scholar 

  79. Takeuchi C, Galve R, Nieva J, Witter DP, Wentworth AD, Troseth RP, Lerner RA, Wentworth P Jr. Proatherogenic effects of the cholesterol ozonolysis products, atheronal-A and atheronal-B. Biochemistry. 2006;45:7162–70.

    CAS  PubMed  Google Scholar 

  80. Sathishkumar K, Haque M, Perumal TE, Francis J, Uppu RM. A major ozonation product of cholesterol, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al, induces apoptosis in H9c2 cardiomyoblast. FEBS Lett. 2005;579:6444–50.

    CAS  PubMed  Google Scholar 

  81. Sathishkumar K, Gao X, Raghavamenon AC, Parinandi N, Pryor WA, Uppu RM. Cholesterol secoaldehyde induces apoptosis in H9c2 cardiomyoblasts through reactive oxygen species involving mitochondrial and death receptor pathways. Free Radic Biol Med. 2009;47:548–58.

    CAS  PubMed  Google Scholar 

  82. Laynes L, Raghavamenon AC, D’Auvergne O, Achuthan V, Uppu RM. MAPK signaling in H9c2 cardiomyoblasts exposed to cholesterol secoaldehyde—role of hydrogen peroxide. Biochem Biophys Res Commun. 2011;404:90–5.

    CAS  PubMed  Google Scholar 

  83. Sathishkumar K, Xi X, Martin R, Uppu RM. Cholesterol secoaldehyde, an ozonation product of cholesterol, induces amyloid aggregation and apoptosis in murine GT1-7 hypothalamic neurons. J Alzheimers Dis. 2007;11:261–74.

    CAS  PubMed  Google Scholar 

  84. Sathishkumar K, Murthy SN, Uppu RM. Cytotoxic effects of oxysterols produced during ozonolysis of cholesterol in murine GT1-7 hypothalamic neurons. Free Radic Res. 2007;41:82–8.

    CAS  PubMed  Google Scholar 

  85. Sathishkumar K, Raghavamenon AC, Ganeshkumar K, Telaprolu R, Parinandi NL, Uppu RM. Simultaneous analysis of expression of multiple redox-sensitive and apoptotic genes in hypothalamic neurons exposed to cholesterol secoaldehyde. Methods Mol Biol. 2010;610:263–84.

    CAS  PubMed  Google Scholar 

  86. Gao X, Raghavamenon AC, D’Auvergne O, Uppu RM. Cholesterol secoaldehyde promotes adhesion of THP-1 monocytes to human vascular smooth muscle cells and induces release of PDGF by cultured monocytes. In: 16th annual meeting of the Society for Free Radical Biology and Medicine, San Francisco, CA, November 18–22, 2009.

    Google Scholar 

  87. Gao X, Raghavamenon AC, D’Auvergne O, Uppu RM. Cholesterol secoaldehyde induces apoptosis in J774 macrophages via mitochondrial pathway but not involving reactive oxygen species as mediators. Biochem Biophys Res Commun. 2009;389:382–7.

    CAS  PubMed  Google Scholar 

  88. Raghavamenon AC, Gernapudi R, Babu S, D’Auvergne O, Murthy SN, Kadowitz PJ, Uppu RM. Intracellular oxidative stress and cytotoxicity in rat primary cortical neurons exposed to cholesterol secoaldehyde. Biochem Biophys Res Commun. 2009;386:170–4.

    CAS  PubMed  Google Scholar 

  89. Laynes L, Raghavamenon AC, Atkins-Ball D, Uppu RM. NADPH oxidase system contributes to cholesterol secoaldehyde-induced oxidative stress in H9C2 cardiomyoblasts. 2020; (In preparation).

    Google Scholar 

  90. Bieschke J, Zhang Q, Powers ET, Lerner RA, Kelly JW. Oxidative metabolites accelerate Alzheimer’s amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry. 2005;44:4977–83.

    CAS  PubMed  Google Scholar 

  91. Nieva J, Shafton A, Altobell LJ III, Tripuraneni S, Rogel JK, Wentworth AD, Lerner RA, Wentworth P Jr. Lipid-derived aldehydes accelerate light chain amyloid and amorphous aggregation. Biochemistry. 2008;47:7695–705.

    CAS  PubMed  Google Scholar 

  92. Scheinost JC, Wang H, Boldt GE, Offer J, Wentworth P Jr. Cholesterol secosterol-induced aggregation of methylated amyloid-beta peptides—insights into aldehyde-initiated fibrillization of amyloid-beta. Angew Chem Int Ed Engl. 2008;47:3919–22.

    CAS  PubMed  Google Scholar 

  93. Cygan NK, Scheinost JC, Butters TD, Wentworth P Jr. Adduction of cholesterol 5,6-secosterol aldehyde to membrane-bound myelin basic protein exposes an immunodominant epitope. Biochemistry. 2011;50:2092–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nieva J, Song BD, Rogel JK, Kujawara D, Altobel L III, Izharrudin A, Boldt GE, Grover RK, Wentworth AD, Wentworth P Jr. Cholesterol secosterol aldehydes induce amyloidogenesis and dysfunction of wild-type tumor protein p53. Chem Biol. 2011;18:920–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Institutes of Health (NIH) through the National Institute of General Medical Science (NIGMS) Grant 5 P2O GM103424-17 and the US Department of Education (US DoE; Title III, HBGI Part B grant number P031B040030). Its contents are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, or US DoE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao M. Uppu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghavamenon, A.C., Gao, X., Atkins-Ball, D.S., Varikuti, S., Parinandi, N.L., Uppu, R.M. (2020). ‘Ozone-Specific’ Oxysterols and Neuronal Cell Signaling. In: Berliner, L., Parinandi, N. (eds) Measuring Oxidants and Oxidative Stress in Biological Systems. Biological Magnetic Resonance, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-47318-1_7

Download citation

Publish with us

Policies and ethics