Skip to main content

Clinical Probes for ROS and Oxidative Stress

  • Chapter
  • First Online:
Measuring Oxidants and Oxidative Stress in Biological Systems

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 34))

Abstract

Electron paramagnetic resonance (EPR) spectroscopy is considered as a valuable tool in the determination and characterization of free radicals in vitro and in animal models; however, its use in humans presents technical challenges. While spin traps and spin probes have their own advantages and disadvantages, there are several factors that need to be considered for the appropriateness of any possible applications, which is a topic that will be discussed in this chapter. Besides the use of exogenous probes for the detection of free radicals, several endogenous molecules are used to determine the redox status in patients using the EPR techniques. In this chapter, both endogenous and exogenous agents for clinical studies of oxidative stress will be discussed. EPR signal formation or disappearance is a measure of the extent of ROS production, but changes in the spectral profile are also exploited, such as in the case of some trityl radical probes. The mechanisms of signal formation, disappearance, or changes thereof will be mentioned in detail in this chapter along with the limitations in their applications and cautionary notes in their interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology (Nobel lecture). Angew Chem Int Ed. 1999;38:1882–92.

    CAS  Google Scholar 

  2. Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol. 2006;147:S193–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Titheradge MA. Nitric oxide in septic shock. Biochim Biophys Acta. 1999;1411:437–55.

    CAS  PubMed  Google Scholar 

  4. Liu X, Miller MJ, Joshi MS, Sadowska-Krowicka H, Clark DA, Lancaster JR Jr. Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem. 1998;273:18709–13.

    CAS  PubMed  Google Scholar 

  5. Fago A, Crumbliss AL, Peterson J, Pearce LL, Bonaventura C. The case of the missing NO-hemoglobin: spectral changes suggestive of heme redox reactions reflect changes in NO-heme geometry. Proc Natl Acad Sci U S A. 2003;100:12087–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Butler AR, Megson IL. Non-heme iron nitrosyls in biology. Chem Rev. 2002;102:1155–66.

    CAS  PubMed  Google Scholar 

  7. Hogg N. Detection of nitric oxide by electron paramagnetic resonance spectroscopy. Free Radic Biol Med. 2010;49:122–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vanin AF, Serezhenkov VA, Mikoyan VD, Genkin MV. The 2.03 signal as an indicator of dinitrosyl–iron complexes with thiol-containing ligands. Nitric Oxide. 1998;2:224–34.

    CAS  PubMed  Google Scholar 

  9. Crack JC, Green J, Thomson AJ, Le Brun NE. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc Chem Res. 2014;47:3196–205.

    CAS  PubMed  Google Scholar 

  10. Vanin AF. Dinitrosyl iron complexes with thiol-containing ligands as a “working form” of endogenous nitric oxide. Nitric Oxide. 2016;54:15–29.

    CAS  PubMed  Google Scholar 

  11. Dumitrescu Sergiu D, Meszaros Andras T, Puchner S, Weidinger A, Boros M, Redl H, Kozlov Andrey V. EPR analysis of extra- and intracellular nitric oxide in liver biopsies. Magn Reson Med. 2017;77:2372–80.

    CAS  PubMed  Google Scholar 

  12. Piknova B, Gladwin MT, Schechter AN, Hogg N. Electron paramagnetic resonance analysis of nitrosylhemoglobin in humans during NO inhalation. J Biol Chem. 2005;280:40583–8.

    CAS  PubMed  Google Scholar 

  13. Lancaster JR Jr, Hibbs JB Jr. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci U S A. 1990;87:1223–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lancaster JR Jr, Langrehr JM, Bergonia HA, Murase N, Simmons RL, Hoffman RA. EPR detection of heme and nonheme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft. J Biol Chem. 1992;267:10994–8.

    CAS  PubMed  Google Scholar 

  15. Tanaka S, Kamiike W, Ito T, Uchikoshi F, Matsuda H, Nozawa M, Kumura E, Shiga T, Kosaka H. Generation of nitric oxide as a rejection marker in rat pancreas transplantation. Transplantation. 1995;60:713–7.

    CAS  PubMed  Google Scholar 

  16. Emanuel NM, Saprin AN, Shabalkin VA, Kozlova LE, Krugljakova KE. Detection and investigation of a new type of ESR signal characteristic of some tumour tissues. Nature. 1969;222:165–7.

    CAS  PubMed  Google Scholar 

  17. Brennan MJ, Cole T, Singley JA. A unique hyperfine ESR spectrum in mouse neoplasms analyzed by computer simulation. Proc Soc Exp Biol Med. 1966;123:715–8.

    CAS  PubMed  Google Scholar 

  18. Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995;92:4392–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V, Moncada S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 1994;54:1352–4.

    CAS  PubMed  Google Scholar 

  20. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995;72:41–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res. 1998;58:2929–34.

    CAS  PubMed  Google Scholar 

  22. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005;65:5009–14.

    CAS  PubMed  Google Scholar 

  23. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2:149–56.

    CAS  PubMed  Google Scholar 

  24. Jakubowska M, Michalczyk-Wetula D, Pyka J, Susz A, Urbanska K, Plonka BK, Kuleta P, Lacki P, Krzykawska-Serda M, Fiedor L, Plonka PM. Nitrosylhemoglobin in photodynamically stressed human tumors growing in nude mice. Nitric Oxide. 2013;35:79–88.

    CAS  PubMed  Google Scholar 

  25. Kirima K, Tsuchiya K, Sei H, Hasegawa T, Shikishima M, Motobayashi Y, Morita K, Yoshizumi M, Tamaki T. Evaluation of systemic blood NO dynamics by EPR spectroscopy: HbNO as an endogenous index of NO. Am J Physiol Heart Circ Physiol. 2003;285:H589–96.

    CAS  PubMed  Google Scholar 

  26. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO III, Gladwin MT. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.

    CAS  PubMed  Google Scholar 

  27. Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, Steinhoff HJ, Goedecke A, Schrader J, Gladwin MT, Kelm M, Rassaf T. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2008;105:10256–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rassaf T, Flogel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res. 2007;100:1749–54.

    CAS  PubMed  Google Scholar 

  29. Webb AJ, Milsom AB, Rathod KS, Chu WL, Qureshi S, Lovell MJ, Lecomte FM, Perrett D, Raimondo C, Khoshbin E, Ahmed Z, Uppal R, Benjamin N, Hobbs AJ, Ahluwalia A. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ Res. 2008;103:957–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Samouilov A, Liu X, Zweier JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues. Biochemistry. 2003;42:1150–9.

    CAS  PubMed  Google Scholar 

  31. Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how. Nitric Oxide. 2013;34:19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Castello PR, David PS, McClure T, Crook Z, Poyton RO. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3:277–87.

    CAS  PubMed  Google Scholar 

  33. Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1:804–9.

    CAS  PubMed  Google Scholar 

  34. Tiravanti E, Samouilov A, Zweier JL. Nitrosyl-heme complexes are formed in the ischemic heart: evidence of nitrite-derived nitric oxide formation, storage, and signaling in post-ischemic tissues. J Biol Chem. 2004;279:11065–73.

    CAS  PubMed  Google Scholar 

  35. Kuppusamy P, Shankar RA, Roubaud VM, Zweier JL. Whole body detection and imaging of nitric oxide generation in mice following cardiopulmonary arrest: detection of intrinsic nitrosoheme complexes. Magn Reson Med. 2001;45:700–7.

    CAS  PubMed  Google Scholar 

  36. Wang P, Zweier JL. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem. 1996;271:29223–30.

    CAS  PubMed  Google Scholar 

  37. Kanematsu Y, Tsuchiya K, Ohnishi H, Motobayashi Y, Izawa Y, Ishihara M, Ishizawa K, Abe S, Kawazoe K, Tamaki T. Effects of angiotensin II type 1 receptor blockade on the systemic blood nitric oxide dynamics in Nomega-nitro-L-arginine methyl ester-treated rats. Hypertens Res. 2006;29:369–74.

    CAS  PubMed  Google Scholar 

  38. Lobysheva II, Biller P, Gallez B, Beauloye C, Balligand JL. Nitrosylated hemoglobin levels in human venous erythrocytes correlate with vascular endothelial function measured by digital reactive hyperemia. PLoS One. 2013;8:e76457.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Buettner GR, Jurkiewicz BA. Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radic Biol Med. 1993;14:49–55.

    CAS  PubMed  Google Scholar 

  40. Vergely C, Maupoil V, Benderitter M, Rochette L. Influence of the severity of myocardial ischemia on the intensity of ascorbyl free radical release and on postischemic recovery during reperfusion. Free Radic Biol Med. 1998;24:470–9.

    CAS  PubMed  Google Scholar 

  41. Pietri S, Culcasi M, Stella L, Cozzone PJ. Ascorbyl free radical as a reliable indicator of free-radical-mediated myocardial ischemic and post-ischemic injury. A real-time continuous-flow ESR study. Eur J Biochem. 1990;193:845–54.

    CAS  PubMed  Google Scholar 

  42. Gielis JF, Boulet GA, Briede JJ, Horemans T, Debergh T, Kusse M, Cos P, Van Schil PE. Longitudinal quantification of radical bursts during pulmonary ischaemia and reperfusion. Eur J Cardiothorac Surg. 2015;48:622–9.

    PubMed  Google Scholar 

  43. Spasojevic I, Stevic Z, Nikolic-Kokic A, Jones DR, Blagojevic D, Spasic MB. Different roles of radical scavengers—ascorbate and urate in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep. 2010;15:81–6.

    CAS  PubMed  Google Scholar 

  44. Enochs WS, Nilges MJ, Swartz HM. A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Res. 1993;6:91–9.

    CAS  PubMed  Google Scholar 

  45. Wood SR, Berwick M, Ley RD, Walter RB, Setlow RB, Timmins GS. UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc Natl Acad Sci U S A. 2006;103:4111–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vanea E, Charlier N, Dewever J, Dinguizli M, Feron O, Baurain JF, Gallez B. Molecular electron paramagnetic resonance imaging of melanin in melanomas: a proof-of-concept. NMR Biomed. 2008;21:296–300.

    CAS  PubMed  Google Scholar 

  47. Fang D, Zhang Z, Li H, Yu Q, Douglas JT, Bratasz A, Kuppusamy P, Yan SSD, Reddy H. Increased electron paramagnetic resonance signal correlates with mitochondrial dysfunction and oxidative stress in an Alzheimer’s disease mouse brain. J Alzheimers Dis. 2016;51:571–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsumura A, Emoto MC, Suzuki S, Iwahara N, Hisahara S, Kawamata J, Suzuki H, Yamauchi A, Sato-Akaba H, Fujii HG, Shimohama S. Evaluation of oxidative stress in the brain of a transgenic mouse model of Alzheimer disease by in vivo electron paramagnetic resonance imaging. Free Radic Biol Med. 2015;85:165–73.

    CAS  PubMed  Google Scholar 

  49. Utsumi H, Yasukawa K, Soeda T, Yamada K, Shigemi R, Yao T, Tsuneyoshi M. Noninvasive mapping of reactive oxygen species by in vivo electron spin resonance spectroscopy in indomethacin-induced gastric ulcers in rats. J Pharmacol Exp Ther. 2006;317:228–35.

    CAS  PubMed  Google Scholar 

  50. Samuni A, Krishna CM, Mitchell JB, Collins CR, Russo A. Superoxide reaction with nitroxides. Free Radic Res Commun. 1990;9:241–9.

    CAS  PubMed  Google Scholar 

  51. Krishna MC, Russo A, Mitchell JB, Goldstein S, Dafni H, Samuni A. Do nitroxide antioxidants act as scavengers of O2-. or as SOD mimics? J Biol Chem. 1996;271:26026–31.

    CAS  PubMed  Google Scholar 

  52. Samuni A, Goldstein S, Russo A, Mitchell JB, Krishna MC, Neta P. Kinetics and mechanism of hydroxyl radical and OH-adduct radical reactions with nitroxides and with their hydroxylamines. J Am Chem Soc. 2002;124:8719–24.

    CAS  PubMed  Google Scholar 

  53. Miura Y, Utsumi H, Hamada A. Antioxidant activity of nitroxide radicals in lipid peroxidation of rat liver microsomes. Arch Biochem Biophys. 1993;300:148–56.

    CAS  PubMed  Google Scholar 

  54. Yamaguchi T, Nakano T, Kimoto E. Oxidation of nitroxide radicals by the reaction of hemoglobin with hydrogen peroxide. Biochem Biophys Res Commun. 1984;120:534–9.

    CAS  PubMed  Google Scholar 

  55. Krishna MC, Samuni A, Taira J, Goldstein S, Mitchell JB, Russo A. Stimulation by nitroxides of catalase-like activity of hemeproteins. Kinetics and mechanism. J Biol Chem. 1996;271:26018–25.

    CAS  PubMed  Google Scholar 

  56. Mitchell JB, Samuni A, Krishna MC, DeGraff WG, Ahn MS, Samuni U, Russo A. Biologically active metal-independent superoxide dismutase mimics. Biochemistry. 1990;29:2802–7.

    CAS  PubMed  Google Scholar 

  57. Bar-On P, Mohsen M, Zhang R, Feigin E, Chevion M, Samuni A. Kinetics of nitroxide reaction with iron(II). J Am Chem Soc. 1999;121:8070–3.

    CAS  Google Scholar 

  58. Kazmierczak SC, Gurachevsky A, Matthes G, Muravsky V. Electron spin resonance spectroscopy of serum albumin: a novel new test for cancer diagnosis and monitoring. Clin Chem. 2006;52:2129–34.

    CAS  PubMed  Google Scholar 

  59. Moergel M, Kammerer PW, Schnurr K, Klein MO, Al-Nawas B. Spin electron paramagnetic resonance of albumin for diagnosis of oral squamous cell carcinoma (OSCC). Clin Oral Investig. 2012;16:1529–33.

    PubMed  Google Scholar 

  60. Rossi S, Giuntini A, Balzi M, Becciolini A, Martini G. Nitroxides and malignant human tissues: electron spin resonance in colorectal neoplastic and healthy tissues. Biochim Biophys Acta. 1999;1472:1–12.

    CAS  PubMed  Google Scholar 

  61. Sok M, Sentjurc M, Schara M. Membrane fluidity characteristics of human lung cancer. Cancer Lett. 1999;139:215–20.

    CAS  PubMed  Google Scholar 

  62. Hsia JC, Kwan NH, Er SS, Wood DJ, Chance GW. Development of a spin assay for reserve bilirubin loading capacity of human serum. Proc Natl Acad Sci U S A. 1978;75:1542–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dikalov SI, Polienko YF, Kirilyuk I, Polienko YF, Kirilyuk I. Electron paramagnetic resonance measurements of reactive oxygen species by cyclic hydroxylamine spin probes. Antioxid Redox Signal. 2018;28(15):1433–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nemzer BV, Fink N, Fink B. New insights on effects of a dietary supplement on oxidative and nitrosative stress in humans. Food Sci Nutr. 2014;2:828–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ewelina G, Krzysztof S, Marek M, Krzysztof K. Blood free radicals concentration determined by electron paramagnetic resonance spectroscopy and delayed cerebral ischemia occurrence in patients with aneurysmal subarachnoid hemorrhage. Cell Biochem Biophys. 2017;75:351–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Valgimigli L, Pedulli GF, Paolini M. Measurement of oxidative stress by EPR radical-probe technique. Free Radic Biol Med. 2001;31:708–16.

    CAS  PubMed  Google Scholar 

  67. Paolini M, Valgimigli L, Marchesi E, Trespidi S, Pedulli GF. Taking EPR “snapshots” of the oxidative stress status in human blood. Free Radic Res. 2003;37:503–8.

    CAS  PubMed  Google Scholar 

  68. Mrakic-Sposta S, Gussoni M, Montorsi M, Porcelli S, Vezzoli A. Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance. Oxidative Med Cell Longev. 2012;2012:973927.

    Google Scholar 

  69. Filosa A, Valgimigli L, Pedulli GF, Sapone A, Maggio A, Renda D, Scazzone C, Malizia R, Pitrolo L, Lo Pinto C, Borsellino Z, Cuccia L, Capra M, Canistro D, Broccoli M, Soleti A, Paolini M. Quantitative evaluation of oxidative stress status on peripheral blood in beta-thalassaemic patients by means of electron paramagnetic resonance spectroscopy. Br J Haematol. 2005;131:135–40.

    CAS  PubMed  Google Scholar 

  70. Vivarelli F, Canistro D, Franchi P, Sapone A, Vornoli A, Della Croce C, Longo V, Lucarini M, Paolini M. Disruption of redox homeostasis and carcinogen metabolizing enzymes changes by administration of vitamin E to rats. Life Sci. 2016;145:166–73.

    CAS  PubMed  Google Scholar 

  71. Dikalov S, Skatchkov M, Bassenge E. Quantification of peroxynitrite, superoxide, and peroxyl radicals by a new spin trap hydroxylamine 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem Biophys Res Commun. 1997;230:54–7.

    CAS  PubMed  Google Scholar 

  72. Zhang R, Goldstein S, Samuni A. Kinetics of superoxide-induced exchange among nitroxide antioxidants and their oxidized and reduced forms. Free Radic Biol Med. 1999;26:1245–52.

    CAS  PubMed  Google Scholar 

  73. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. 2010;107:106–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Porter TR, Mayer JM. Radical reactivity of the Fe(III)/(II) tetramesitylporphyrin couple: hydrogen atom transfer, oxyl radical dissociation, and catalytic disproportionation of a hydroxylamine. Chem Sci. 2014;5:372–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dikalov SI, Vitek MP, Maples KR, Mason RP. Amyloid beta peptides do not form peptide-derived free radicals spontaneously, but can enhance metal-catalyzed oxidation of hydroxylamines to nitroxides. J Biol Chem. 1999;274:9392–9.

    CAS  PubMed  Google Scholar 

  76. Dikalov SI, Vitek MP, Mason RP. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radic Biol Med. 2004;36:340–7.

    CAS  PubMed  Google Scholar 

  77. Chen K, Swartz HM. Oxidation of hydroxylamines to nitroxide spin labels in living cells. Biochim Biophys Acta. 1988;970:270–7.

    CAS  PubMed  Google Scholar 

  78. Bobko AA, Kirilyuk IA, Grigor'ev IA, Zweier JL, Khramtsov VV. Reversible reduction of nitroxides to hydroxylamines: roles for ascorbate and glutathione. Free Radic Biol Med. 2007;42:404–12.

    CAS  PubMed  Google Scholar 

  79. Sen VD, Tikhonov IV, Borodin LI, Pliss EM, Golubev VA, Syroeshkin MA, Rusakov AI. Kinetics and thermodynamics of reversible disproportionation-comproportionation in redox triad oxoammonium cations—nitroxyl radicals—hydroxylamines. J Phys Org Chem. 2015;28:17–24.

    CAS  Google Scholar 

  80. Villamena FA, Xia S, Merle JK, Lauricella R, Tuccio B, Hadad CM, Zweier JL. Reactivity of superoxide radical anion with cyclic nitrones: role of intramolecular H-bond and electrostatic effects. J Am Chem Soc. 2007;129:8177–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lauricella R, Allouch A, Roubaud V, Bouteiller JC, Tuccio B. A new kinetic approach to the evaluation of rate constants for the spin trapping of superoxide/hydroperoxyl radical by nitrones in aqueous media. Org Biomol Chem. 2004;2:1304–9.

    CAS  PubMed  Google Scholar 

  82. Gunther MR. Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction. Free Radic Biol Med. 2004;36:1345–54.

    CAS  PubMed  Google Scholar 

  83. Saito K, Takahashi M, Kamibayashi M, Ozawa T, Kohno M. Comparison of superoxide detection abilities of newly developed spin traps in the living cells. Free Radic Res. 2009;43:668–76.

    CAS  PubMed  Google Scholar 

  84. Fuchs J, Groth N, Herrling T. In vitro and in vivo assessment of the irritation potential of different spin traps in human skin. Toxicology. 2000;151:55–63.

    CAS  PubMed  Google Scholar 

  85. Noor JI, Ueda Y, Ikeda T, Ikenoue T. Edaravone inhibits lipid peroxidation in neonatal hypoxic-ischemic rats: an in vivo microdialysis study. Neurosci Lett. 2007;414:5–9.

    CAS  PubMed  Google Scholar 

  86. Tepe Cam S, Polat M, Esmekaya MA, Canseven AG, Seyhan N. Tea extracts protect normal lymphocytes but not leukemia cells from UV radiation-induced ROS production: an EPR spin trap study. Int J Radiat Biol. 2015;91:673–80.

    CAS  PubMed  Google Scholar 

  87. Goudeau J-J, Clermont G, Guillery O, Lemaire-Ewing S, Musat A, Vernet M, Vergely C, Guiguet M, Rochette L, Girard C. In high-risk patients, combination of antiinflammatory procedures during cardiopulmonary bypass can reduce incidences of inflammation and oxidative stress. J Cardiovasc Pharmacol. 2007;49:39–45.

    CAS  PubMed  Google Scholar 

  88. Pinamonti S, Leis M, Barbieri A, Leoni D, Muzzoli M, Sostero S, Chicca MC, Carrieri A, Ravenna F, Fabbri LM, Ciaccia A. Detection of xanthine oxidase activity products by EPR and HPLC in bronchoalveolar lavage fluid from patients with chronic obstructive pulmonary disease. Free Radic Biol Med. 1998;25:771–9.

    CAS  PubMed  Google Scholar 

  89. Ochsendorf FR, Goy C, Fuchs J, Morke W, Beschmann HA, Bromme HJ. Lucigenin chemiluminescence in human seminal plasma. Free Radic Res. 2001;34:153–65.

    CAS  PubMed  Google Scholar 

  90. Delmas-Beauvieux M-C, Peuchant E, Thomas M-J, Dubourg L, Pinto AP, Clerc M, Gin H. The place of electron spin resonance methods in the detection of oxidative stress in type 2 diabetes with poor glycemic control. Clin Biochem. 1998;31:221–8.

    CAS  PubMed  Google Scholar 

  91. Chou D-S, Hsiao G, Shen M-Y, Tsai Y-J, Chen T-F, Sheu J-R. ESR spin trapping of a carbon-centered free radical from agonist-stimulated human platelets. Free Radic Biol Med. 2005;39:237–48.

    CAS  PubMed  Google Scholar 

  92. Klemm A, Voigt C, Friedrich M, Funfstuck R, Sperschneider H, Jager E-G, Stein G. Determination of erythrocyte antioxidant capacity in haemodialysis patients using electron paramagnetic resonance. Nephrol Dial Transplant. 2001;16:2166–71.

    CAS  PubMed  Google Scholar 

  93. Andersen JM, Myhre O, Aarnes H, Vestad TA, Fonnum F. Identification of the hydroxyl radical and other reactive oxygen species in human neutrophil granulocytes exposed to a fragment of the amyloid beta peptide. Free Radic Res. 2003;37:269–79.

    CAS  PubMed  Google Scholar 

  94. Zweier JL, Broderick R, Kuppusamy P, Thompson-Gorman S, Lutty GA. Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem. 1994;269:24156–62.

    CAS  PubMed  Google Scholar 

  95. Zweier JL, Kuppusamy P, Thompson-Gorman S, Klunk D, Lutty GA. Measurement and characterization of free radical generation in reoxygenated human endothelial cells. Am J Phys. 1994;266:C700–8.

    CAS  Google Scholar 

  96. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD. Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res. 2003;93:573–80.

    CAS  PubMed  Google Scholar 

  97. Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A, Bristow MR, Colucci WS, Sawyer DB. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Failure. 2005;11:473–80.

    CAS  Google Scholar 

  98. Kadiiska MB, Ghio AJ, Mason RP. ESR investigation of the oxidative damage in lungs caused by asbestos and air pollution particles. Spectrochim Acta A. 2004;60A:1371–7.

    CAS  Google Scholar 

  99. Marchand V, Charlier N, Verrax J, Buc-Calderon P, Leveque P, Gallez B. Use of a cocktail of spin traps for fingerprinting large range of free radicals in biological systems. PLoS One. 2017;12:e0172998/0172991–15.

    Google Scholar 

  100. Locigno EJ, Zweier JL, Villamena FA. Nitric oxide release from the unimolecular decomposition of the superoxide radical anion adduct of cyclic nitrones in aqueous medium. Org Biomol Chem. 2005;3:3220–7.

    CAS  PubMed  Google Scholar 

  101. Kumar A, Ganini D, Deterding LJ, Ehrenshaft M, Chatterjee S, Mason RP. Immuno-spin trapping of heme-induced protein radicals: implications for heme oxygenase-1 induction and heme degradation. Free Radic Biol Med. 2013;61:265–72.

    CAS  PubMed  Google Scholar 

  102. Ranguelova K, Rice AB, Lardinois OM, Triquigneaux M, Steinckwich N, Deterding LJ, Garantziotis S, Mason RP. Sulfite-mediated oxidation of myeloperoxidase to a free radical: immuno-spin trapping detection in human neutrophils. Free Radic Biol Med. 2013;60:98–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chatterjee S, Ehrenshaft M, Bhattacharjee S, Deterding LJ, Bonini MG, Corbett J, Kadiiska MB, Tomer KB, Mason RP. Immuno-spin trapping of a post-translational carboxypeptidase B1 radical formed by a dual role of xanthine oxidase and endothelial nitric oxide synthase in acute septic mice. Free Radic Biol Med. 2009;46:454–61.

    CAS  PubMed  Google Scholar 

  104. Floyd RA. Nitrones as therapeutics in age-related diseases. Aging Cell. 2006;5:51–7.

    CAS  PubMed  Google Scholar 

  105. Villamena FA, Das A, Nash KM. Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem. 2012;4:1171–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Poulhes F, Rizzato E, Bernasconi P, Rosas R, Viel S, Jicsinszky L, Rockenbauer A, Bardelang D, Siri D, Gaudel-Siri A, Karoui H, Hardy M, Ouari O. Synthesis and properties of a series of β-cyclodextrin/nitrone spin traps for improved superoxide detection. Org Biomol Chem. 2017;15:6358–66.

    CAS  PubMed  Google Scholar 

  107. Han Y, Liu Y, Rockenbauer A, Zweier JL, Durand G, Villamena FA. Lipophilic β-cyclodextrin cyclic-nitrone conjugate: synthesis and spin trapping studies. J Org Chem. 2009;74:5369–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Han Y, Tuccio B, Lauricella R, Villamena FA. Improved spin trapping properties by β-cyclodextrin-cyclic nitrone conjugate. J Org Chem. 2008;73:7108–17.

    CAS  PubMed  Google Scholar 

  109. Kim S-U, Liu Y, Nash KM, Zweier JL, Rockenbauer A, Villamena FA. Fast reactivity of a cyclic nitrone-calix[4]pyrrole conjugate with superoxide radical anion: theoretical and experimental studies. J Am Chem Soc. 2010;132:17157–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hardy M, Poulhes F, Rizzato E, Rockenbauer A, Banaszak K, Karoui H, Lopez M, Zielonka J, Vasquez-Vivar J, Sethumadhavan S, Kalyanaraman B, Tordo P, Ouari O. Mitochondria-targeted spin traps: synthesis, superoxide spin trapping, and mitochondrial uptake. Chem Res Toxicol. 2014;27:1155–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hardy M, Rockenbauer A, Vasquez-Vivar J, Felix C, Lopez M, Srinivasan S, Avadhani N, Tordo P, Kalyanaraman B. Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap. Chem Res Toxicol. 2007;20:1053–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ardenkjaer-Larsen JH, Laursen I, Leunbach I, Ehnholm G, Wistrand LG, Petersson JS, Golman K. EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J Magn Reson. 1998;133:1–12.

    CAS  PubMed  Google Scholar 

  113. Marchand V, Leveque P, Driesschaert B, Gallez B, Driesschaert B, Marchand-Brynaert J. In vivo EPR extracellular pH-metry in tumors using a triphosphonated trityl radical. Magn Reson Med. 2017;77:2438–43.

    CAS  PubMed  Google Scholar 

  114. Bobko AA, Eubank TD, Driesschaert B, Dhimitruka I, Evans J, Mohammad R, Tchekneva EE, Dikov MM, Khramtsov VV. Interstitial inorganic phosphate as a tumor microenvironment marker for tumor progression. Sci Rep. 2017;7:41233.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Rizzi C, Samouilov A, Kutala VK, Parinandi NL, Zweier JL, Kuppusamy P. Application of a trityl-based radical probe for measuring superoxide. Free Radic Biol Med. 2003;35:1608–18.

    CAS  PubMed  Google Scholar 

  116. Kutala VK, Villamena FA, Ilangovan G, Maspoch D, Roques N, Veciana J, Rovira C, Kuppusamy P. Reactivity of superoxide anion radical with a perchlorotriphenylmethyl (trityl) radical. J Phys Chem B. 2008;112:158–67.

    CAS  PubMed  Google Scholar 

  117. Kutala VK, Parinandi NL, Zweier JL, Kuppusamy P. Reaction of superoxide with trityl radical: implications for the determination of superoxide by spectrophotometry. Arch Biochem Biophys. 2004;424:81–8.

    CAS  PubMed  Google Scholar 

  118. Dang V, Wang J, Feng S, Buron C, Villamena FA, Wang PG, Kuppusamy P. Synthesis and characterization of a perchlorotriphenylmethyl (trityl) triester radical: a potential sensor for superoxide and oxygen in biological systems. Bioorg Med Chem Lett. 2007;17:4062–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Xia S, Villamena FA, Hadad CM, Kuppusamy P, Li Y, Zhu H, Zweier JL. Reactivity of molecular oxygen with ethoxycarbonyl derivatives of tetrathiatriarylmethyl radicals. J Org Chem. 2006;71:7268–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Decroos C, Li Y, Bertho G, Frapart Y, Mansuy D, Boucher JL. Oxidation of tris-(p-carboxyltetrathiaaryl)methyl radical EPR probes: evidence for their oxidative decarboxylation and molecular origin of their specific ability to react with O2*. Chem Commun. 2009;(11):1416–8.

    Google Scholar 

  121. Liu Y, Villamena FA, Rockenbauer A, Zweier JL. Trityl-nitroxide biradicals as unique molecular probes for the simultaneous measurement of redox status and oxygenation. Chem Commun. 2010;46:628–30.

    CAS  Google Scholar 

  122. Liu Y, Villamena FA, Song Y, Sun J, Rockenbauer A, Zweier JL. Synthesis of 14N- and 15N-labeled trityl-nitroxide biradicals with strong spin-spin interaction and improved sensitivity to redox status and oxygen. J Org Chem. 2010;75:7796–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu Y, Song Y, Rockenbauer A, Sun J, Hemann C, Villamena FA, Zweier JL. Synthesis of trityl radical-conjugated disulfide biradicals for measurement of thiol concentration. J Org Chem. 2011;76:3853–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Poncelet M, Driesschaert B, Bobko AA, Khramtsov VV. Triarylmethyl-based biradical as a superoxide probe. Free Radic Res. 2018;52(3):373–9.

    CAS  PubMed  Google Scholar 

  125. Liu Y, Song Y, De Pascali F, Liu X, Villamena FA, Zweier JL. Tetrathiatriarylmethyl radical with a single aromatic hydrogen as a highly sensitive and specific superoxide probe. Free Radic Biol Med. 2012;53:2081–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Driesschaert B, Bobko AA, Khramtsov VV, Driesschaert B, Bobko AA, Khramtsov VV, Zweier JL. Nitro-triarylmethyl radical as dual oxygen and superoxide probe. Cell Biochem Biophys. 2017;75:241–6.

    CAS  PubMed  Google Scholar 

  127. Tan X, Chen L, Song Y, Rockenbauer A, Villamena FA, Zweier JL, Liu Y. Thiol-dependent reduction of the triester and triamide derivatives of Finland trityl radical triggers O2-dependent superoxide production. Chem Res Toxicol. 2017;30:1664–72.

    CAS  PubMed  Google Scholar 

  128. Decroos C, Li Y, Bertho G, Frapart Y, Mansuy D, Boucher JL. Oxidative and reductive metabolism of tris(p-carboxyltetrathiaaryl)methyl radicals by liver microsomes. Chem Res Toxicol. 2009;22:1342–50.

    CAS  PubMed  Google Scholar 

  129. Decroos C, Boucher JL, Mansuy D, Xu-Li Y. Reactions of amino acids, peptides, and proteins with oxidized metabolites of tris(p-carboxyltetrathiaaryl)methyl radical EPR probes. Chem Res Toxicol. 2014;27:627–36.

    CAS  PubMed  Google Scholar 

  130. Song Y, Liu Y, Liu W, Villamena FA, Zweier JL. Characterization of the binding of the Finland trityl radical with bovine serum albumin. RSC Adv. 2014;4:47649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Song Y, Liu Y, Hemann C, Villamena FA, Zweier JL. Esterified dendritic TAM radicals with very high stability and enhanced oxygen sensitivity. J Org Chem. 2013;78:1371–6.

    CAS  PubMed  Google Scholar 

  132. Serda M, Wu YK, Barth ED, Halpern HJ, Rawal VH. EPR imaging spin probe trityl radical OX063: a method for its isolation from animal effluent, redox chemistry of its quinone methide oxidation product, and in vivo application in a mouse. Chem Res Toxicol. 2016;29:2153–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tan X, Tao S, Liu W, Rockenbauer A, Villamena FA, Zweier JL, Song Y, Liu Y. Synthesis and characterization of the perthiatriarylmethyl radical and its dendritic derivatives with high sensitivity and selectivity to superoxide radical. Chemistry. 2018;24(27).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick A. Villamena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamora, P.L., Villamena, F.A. (2020). Clinical Probes for ROS and Oxidative Stress. In: Berliner, L., Parinandi, N. (eds) Measuring Oxidants and Oxidative Stress in Biological Systems. Biological Magnetic Resonance, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-47318-1_3

Download citation

Publish with us

Policies and ethics