Skip to main content

Pitfalls of Reactive Oxygen Species (ROS) Measurements by Fluorescent Probes and Mitochondrial Superoxide Determination Using MitoSOX

  • Chapter
  • First Online:
Measuring Oxidants and Oxidative Stress in Biological Systems

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 34))

Abstract

Intracellular and mitochondrial superoxide formation is detected using phenanthrene-based dyes such as hydroethidine, mitochondria-targeted hydroethidine, or MitoSOX. HE and MitoSOX are redox probes, which undergo two-electron oxidation forming ethidium (E+) and Mito-ethidium (Mito-E+). The two-electron oxidation products derived from these probes exhibit the characteristic fluorescence that aids in fluorescence microscopy or flow cytometry or related techniques that are used to detect and determine superoxide (sometimes referred to as ROS, mitochondrial ROS, or mROS). This chapter briefly addresses the pitfalls of fluorescence-based techniques for detecting the intracellular superoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zielonka J, Kalyanaraman B. Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 2010;48:983–1001. Review.

    Google Scholar 

  2. Kalyanaraman B. What effects do antioxidants have on tumors? Sci Trends. 2018. https://sciencetrends.com/what-effects-do-antioxidants-have-on-tumors/.

  3. De Biasi S, Gibellini L, Bianchini E, Nasi M, Pinti M, Salvioli S, Cossarizza A. Quantification of mitochondrial reactive oxygen species in living cells by using multi-laser polychromatic flow cytometry. Cytometry A. 2016;89(12):1106–10.

    Article  Google Scholar 

  4. Zielonka J, Joseph J, Sikora A, Kalyanaraman B. Real-time monitoring of reactive oxygen and nitrogen species in a multiwell plate using the diagnostic marker products of specific probes. Methods Enzymol. 2013;526:145–57.

    Article  CAS  Google Scholar 

  5. Zielonka J, Hardy M, Kalyanaraman B. HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements. Free Radic Biol Med. 2009;46:329–38.

    Article  CAS  Google Scholar 

  6. Zielonka J, Vásquez-Vivar J, Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat Protoc. 2008;3:8–21.

    Article  CAS  Google Scholar 

  7. Kalyanaraman B, Hardy M, Zielonka J. A critical review of methodologies to detect reactive oxygen and nitrogen species by NADPH oxidase enzymes: implications in pesticide toxicity. Curr Pharmacol Rep. 2016;2:193–201.

    Article  CAS  Google Scholar 

  8. Kalyanaraman B, Hardy M, Podsiadly R, Cheng G, Zielonka J. Recent developments in detection of superoxide radical anion and hydrogen peroxide: opportunities, challenges, and implications in redox signaling. Arch Biochem Biophys. 2017;617:38–47.

    Article  CAS  Google Scholar 

  9. Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med. 2003;34:1359–68.

    Article  CAS  Google Scholar 

  10. Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vásquez-Vivar J, Kalyanaraman B. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci U S A. 2005;102:5727–32. [Erratum: Proc Natl Acad Sci USA. 102:9086, 2005].

    Article  CAS  Google Scholar 

  11. Zielonka J, Srinivasan S, Hardy M, Ouari O, Lopez M, Vásquez-Vivar J, Avadhani NG, Kalyanaraman B. Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: identification of homo- and heterodimers. Free Radic Biol Med. 2008;44:835–46.

    Article  CAS  Google Scholar 

  12. Xiao Y, Meierhofer D. Are hydroethidine-based probes reliable for reactive oxygen species detection? Antioxid Redox Signal. 2018;31(4):359–67. https://doi.org/10.1089/ars.2018.7535.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaraman Kalyanaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalyanaraman, B. (2020). Pitfalls of Reactive Oxygen Species (ROS) Measurements by Fluorescent Probes and Mitochondrial Superoxide Determination Using MitoSOX. In: Berliner, L., Parinandi, N. (eds) Measuring Oxidants and Oxidative Stress in Biological Systems. Biological Magnetic Resonance, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-47318-1_2

Download citation

Publish with us

Policies and ethics