Skip to main content

Translational Genomics and Breeding in Soybean

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 3

Abstract

Soybean is an economically important leguminous crop possessing most economical source of protein in the world with carbon opportunity cost of 17 kg CO2 equivalent/kg of protein. Development of varieties suited to different cropping systems by manipulating flowering and maturity duration and resistant to various diseases by introgression of disease resistance genes from donors showing resistance to particular disease at hot spots or under artificial conditions, improving oil quality by manipulating fatty acid composition, improving flavour and fragrance by genetic removal of lipoxygenase isozymes responsible for off-flavour and introgression of dysfunctional alleles of GmBADH2 (Glycine max betaine aldehyde dehydrogenase 2) leading to elevation of a fragrant volatile compound 2-acetyl-1-pyrroline (2AP) biosynthesis and genetic elimination of anti-nutrients by introgression of null allele of Kunitz trypsin inhibitor (KTI) responsible for poor digestibility of soya protein and dysfunctional alleles of genes involved in biosynthesis pathway of phytic acid responsible for reduced availability of essential minerals are the major goals in genetic improvement of soybean. Traditional plant breeders have used conventional breeding approaches for genetic improvement of these traits in soybean with limited success and speed. Molecular markers have proved to be a new tool in soybean breeding by enhancing selection efficiency in a rapid and time-bound manner. Marker-assisted selection (MAS) has been arguably the most important plant breeding tool developed in the last 20 years. Marker-assisted selection increases the heritability of selectable traits and increases the rate of genetic gain, by decreasing the variance of the selected trait. The ability to select only lines with a desired trait phenotype promotes a more efficient use of plant breeding resources. Genetic markers have been developed for many commercially important traits and are being used in soybean breeding programmes. Translational genomic approaches by using available genetic information in the form of gene sequences and molecular markers linked to desirable traits have greatly accelerated the development of soybean varieties with desirable flowering and maturity duration suited to different cropping systems, disease resistance, improved oil quality with better oxidative stability and reduced phytic acid in its seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe J, Xu DH, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y (2003) Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci 43(4):1300–1304

    Google Scholar 

  • Akond M, Shiming L, Lauren S, Anderson JA, Kantartzi SK, Meksem K (2013) A SNP-based genetic linkage map of soybean using the soySNP6K illumina infinium beadchip genotyping array. J Plant Genome Sci 1:80–89

    Google Scholar 

  • Anderson RL (1992) Effect of steaming on soybean proteins and trypsin inhibitors. J Am Oil Chem Soc 69:1170–1176

    CAS  Google Scholar 

  • Axelrod B, Cheesbrough T, Laakso S (1981) Lipoxygenase from soybeans. Methods Enzymol 71:441–451

    CAS  Google Scholar 

  • Ahmad A, Ramasamy K, Jaafar SM, Majeed ABA, Mani V, (2014) Total isoflavones from soybean and tempeh reversed scopolamine-induced amnesia, improved cholinergic activities and reduced neuroinflammation in brain. Food and Chemical Toxicology 65:120–128

    Google Scholar 

  • Bernal-Lugo I, Castillo A, Diaz de Leon F, Moreno E, Ramirez J (1991) Does phytic acid influence cooking rate in common beans. J Food Biochem 15:367–374

    Google Scholar 

  • Bernard RL, Nelson RI, Cremeens CR (1991) USDA soybean genetic collection: isoline collection. Soybean Genet Newsl 18:27–57

    Google Scholar 

  • Bhattacharyya PK, Ram HH, Kole PC (1999) Inheritance of resistance to yellow mosaic virus in interspecific crosses of soybean. Euphytica 108:157–159

    Google Scholar 

  • Bhor TJ, Chimote VP, Deshmukh MP (2015) Molecular tagging of Asiatic soybean rust resistance in exotic genotype EC 241780 reveals complementation of two genes. Plant Breed 134:70–77

    CAS  Google Scholar 

  • Bilyeu K, Palavalli P, Sleper D, Beuselinck P (2005) Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop Sci 45:1830–1836

    CAS  Google Scholar 

  • Bilyeu K, Zeng P, Coello P, Zhang ZJ, Krishnan HB, Bailey A, Beuselinck PR, Polacco JC (2008) Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiol 146:468–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bilyeu K, Gillman J, LeRoy AR (2011) Novel FAD3 mutant allele combinations produce soybeans containing 1% linolenic acid in the seed oil. Crop Sci 51(1):259–264

    Google Scholar 

  • Bilyeu K, Skrabisova M, Allen D, Rajcan I, Palmquis DE, Gillen A, Mian R, Jo H (2018) The interaction of the soybean seed high oleic acid oil trait with other fatty acid modifications. J Am Oil Chem Soc 95:39–49

    CAS  Google Scholar 

  • Brandon DL, Bates AH, Friedman M (1991) ELISA analysis of soybean trypsin inhibitors in processed foods. Adv Exp Med Biol 289:321–337

    CAS  PubMed  Google Scholar 

  • Bradbury LMT, Fitzgerald TL, Henry RJ, Jin Q, Waters DLE (2005) The gene for fragrance in rice. Plant Biotechnology Journal 3(3):363–370

    Google Scholar 

  • Brogin RL, Arias CAA, Vello NA, Toledo JFF, Pipolo AE, Catelli LL, Marin SRR (2004) Molecular mapping of a gene conferring resistance to soybean rust. VII World Soybean Research Conference, Foz do Iguassu, 29 Feb – 5 Mar 2004

    Google Scholar 

  • Bromfield KR (1984) Soybean rust monograph no. 11. American Phytopathological Society, St. Paul

    Google Scholar 

  • Bromfield KR, Hartwig EE (1980) Resistance to soybean rust and mode of inheritance. Crop Sci 20(2):254–255

    Google Scholar 

  • Bromfield KR, Melching JS (1982) Sources of specific resistance to soybean rust. Phytopathology 71:706

    Google Scholar 

  • Brune, M. F. S. S.; Pinto, M. O.; Peluzio, M. C. G.; Moreira,M. A. & Barros, E. G. (2010). Avaliação bioquímico-nutricional de uma linhagem de soja livre do inibidor de tripsina Kunitz e de lectinas. Ciência e Tecnologia de Alimentos, vol. 30, No. 3, pp. 657-663, ISSN : 0101-2061

    Google Scholar 

  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9 mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnol J 16(1):176–185

    CAS  PubMed  Google Scholar 

  • Calvo ES, Kiihl RAS, Garcia A, Harada A, Hiromoto DM (2008) Two major recessive soybean genes conferring soybean rust resistance. Crop Sci 48(4):1350–1354

    Google Scholar 

  • Cao D, Takeshima R, Zhao C, Liu B, Jun A, Kong F (2016) Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot 68:1873–1884

    Google Scholar 

  • Chappell AS, Bilyeu KD (2006) A GmFAD3A mutation in the low linolenic acid soybean mutant C1640. Plant Breed 125(5):525–536

    Google Scholar 

  • Chappell AS, Bilyeu KD (2007) The low linolenic acid soybean line PI 361088B contains a novel GmFAD3A mutation. Crop Sci 47:1705–1710

    CAS  Google Scholar 

  • Chen LH, Pan SH (1985) Solubility and foaming properties of phytate reduced soy protein isolate. J Food Sci 42:1098–1101

    Google Scholar 

  • Chen P, Buss GR, Roane CW, Tolin SA (1991) Allelism among genes for resistance to soybean mosaic virus in strain differential soybean cultivars. Crop Sci 31:305–309

    Google Scholar 

  • Chen P, Buss GR, Tolin SA (1993) Resistance to soybean mosaic virus conferred by two independent dominant genes in PI 486355. Heredity 84:25–28

    Google Scholar 

  • Chen P, Ma G, Buss GR, Gunduz I, Roane CW, Tolin SA (2001) Inheritance and allelism test of Raiden soybean for resistance to soybean mosaic virus. J Hered 92:51–55

    CAS  PubMed  Google Scholar 

  • Chen Y, Xu Z, Zhang C, Kong X, Hua Y (2014) Heat-induced inactivation mechanisms of Kunitz trypsin inhibitor and Bowman-Birk inhibitor in soymilk processing. Food Chem 154:108–116

    CAS  PubMed  Google Scholar 

  • Chitra U, Vimla V, Singh U, Geervani P (1995) Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods Hum Nutr 47:163–172

    CAS  PubMed  Google Scholar 

  • Cho EK, Goodman RM (1979) Strains of soybean mosaic virus: classification based on virulence in resistant soybean cultivars. Phytopathology 69:467–470

    Google Scholar 

  • Chung WH, Jeong N, Kim J, Lee WK, Lee YG, Lee SH (2014) Population structure and domestication revealed by high-depth re-sequencing of Korean cultivated and wild soybean genomes. DNA Res 21:153–167

    CAS  PubMed  Google Scholar 

  • Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701

    Google Scholar 

  • Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527

    Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572

    CAS  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Jongil C, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Davies CS, Nielsen NC (1986) Genetic analysis of a null-allele for lipoxygenase-2 in soybean. Crop Sci 26:460–463

    Google Scholar 

  • De Moraes RMA, Soares TCB, Colombo LR, Salla MFS, de Almeida Barros JG, Piovesan ND, de Barros EG, Moreira MA (2006) Assisted selection by specific DNA markers for genetic elimination of the kunitz trypsin inhibitor and lectin in soybean seeds. Euphytica 149:221–226

    Google Scholar 

  • De Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS (2015) Intake of saturated and trans unsaturated fatty acids and risk of all-cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. Br Med J 351:39–78

    Google Scholar 

  • Dissanayaka A, Rodriguez TO, Di S, Yan F, Githiri SM, Rodas FR (2016) Quantitative trait locus mapping of soybean maturity gene E5. Breed Sci 66:407–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Valè G, (2005) Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture 82(3):317–342

    Google Scholar 

  • Food and Drug Administration (2003) Entity compliance guide: trans fatty acids in nutrition labeling, nutrient content claims, and health claims. Fed Regist 68:41433–41506

    Google Scholar 

  • Food Safety and Standards Authority of India (2018) Freedom from trans-fats by 2022. https://www.fssai.gov.in/home/Press-Releases

  • Forbes RM, Erdman JW, Parker HM, Kondo H, Ketelsen SM (1983) Bioavailability of zinc in coagulated soy protein (tofu) to rats and effect of dietary calcium at a constant phytate:zinc ratio. J Nutr 113:205–210

    CAS  PubMed  Google Scholar 

  • Fu S, Zhan Y, Zhi H, Gai J, Yu D (2006) Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica 128:63–69

    CAS  PubMed  Google Scholar 

  • Fushimi T, Masuda R (2001) 2-acetyl-1-pyrroline concentration of the vegetable soybean. In: Lumpkin T, Shanmugasundaram S (eds) Proceeding of the 2nd international vegetable soybean conference. Washington State University, Pullman, p 39

    Google Scholar 

  • Garcia A, Calvo ES, de Souza Kiihl RA, Harada A, Hiromoto DM, Vieira LG (2008) Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles. Theor Appl Genet 117:545–553

    CAS  PubMed  Google Scholar 

  • Gerde JA, White PJ (2008) Lipids. In: Johnson LA, White PJ, Galloway R (eds) Soybeans: chemistry, production, processing, and utilization. AOCS Press, Urbana, pp 193–227

    Google Scholar 

  • Gillman JD, Pantalone VR, Bilyeu K (2009) The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Gen 2:179–190

    CAS  Google Scholar 

  • Godoy C (2009) Changes in performance of soybean rust fungicides over years and new management strategies adopted in Brazil. National Soybean Rust Symposium, New Orleans, 9–11 Dec 2009

    Google Scholar 

  • Gunduz I, Buss GR, Ma G, Chen P, Tolin SA (2000) Genetic analysis of resistance to soybean mosaic virus in OX670 and Harosoy soybean. Crop Sci 41:1785–1791

    Google Scholar 

  • Guo DQ, Zhi HJ, Wang YW, Gai JY, Zhou XA, Yang CL (2005) Identification and distribution of strains of soybean mosaic virus in middle and northern of Huang Huai region of China. Soybean Sci 27:64–68

    Google Scholar 

  • Hajika M, Igita K, Kitamura K (1991) A line lacking all the seed lipoxygenase isozymes in soybean [Glycine max (L.) Merrill] induced by gamma-ray irradiation. Jpn J Breed 41:507–509

    Google Scholar 

  • Hajika M, Kitamura K, Igita K, Nakazawa Y (1992) Genetic relationships among the genes for lipoxygenase-1, -2 and -3 isozymes in soybean [Glycine max (L.) Merrill] seed. Jpn J Breed 42:787–792

    Google Scholar 

  • Hajimorad MR, Hill JH (2001) Rsv1-mediated resistance against soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. Mol Plant Microbe Interact 14:587–598

    CAS  PubMed  Google Scholar 

  • Han T, Gai J, Wang J, Zhou D (1997) Discovery of flowering reversion in soybean plants. Acta Agron Sin 24:168–171

    Google Scholar 

  • Hartwig EE (1986) Identification of a 4th major gene conferring resistance to soybean rust. Crop Sci 26(6):1135–1136

    Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    CAS  PubMed  Google Scholar 

  • Hayes AJ, Ma G, Buss GR, Saghai Maroof MA (2000) Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Sci 40:1434–1437

    CAS  Google Scholar 

  • Hayes AJ, Jeong SC, Gore MA, Yu YG, Buss GR, Tolin SA et al (2004) Recombination within a nucleotide-binding site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans. Genetics 166:493–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hennings P (1903) Some new Japanese Uredinales. Hedwigia (Suppl) 4:107–108

    Google Scholar 

  • Hildebrand DF, Hymowitz T (1982) Inheritance of Lipoxygenase-1 activity in soybean seeds. Crop Sci 22:851–853

    CAS  Google Scholar 

  • Hill JH, Whitham SA (2014) Control of virus diseases in soybeans. Adv Virus Res 90:355–390

    PubMed  Google Scholar 

  • Hitz WD, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype in soybean seeds. Plant Physiol 128:650–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang TY, Moon JK, Yu S, Yang K, Mohankumar S, Yu YH (2006) Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean. Genome 49:380–388

    CAS  PubMed  Google Scholar 

  • Hymowitz T (1973) Electrophoretic analysis of SBTIA2 in the USDA soybean germplasm collection. Crop Sci 13:420–421

    Google Scholar 

  • Hyten DL, Hartman GL, Nelson RL, Frederick RD, Concibido VC, Narvel JM, Cregan PB (2007) Map location of the Rpp1 locus that confers resistance to soybean rust in soybean. Crop Sci 47(2):837–840

    CAS  Google Scholar 

  • Ilut DC, Lipka AE, Jeong N, Bae DN, Kim DH, Kim JH (2016) Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus. Theor Appl Genet 129:453–468

    CAS  PubMed  Google Scholar 

  • Jeong SC, Kristipati S, Hayes AJ, Maughan PJ, Noffsinger SL, Gunduz I (2002) Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene Rsv3. Crop Sci 42:265–270

    CAS  PubMed  Google Scholar 

  • Jones PMB, Boulter D (1983) The cause of reduced cooking rate in Phaseolus vulgaris following adverse storage conditions. J Food Sci 48:623–627

    Google Scholar 

  • Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S, Kaga A (2011) A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety “Kaori” and SNAP marker development for the fragrance. Theor Appl Genet 122:533–541

    CAS  PubMed  Google Scholar 

  • Juwattanasomran R, Somta P, Kaga A, Chankaew S, Shimizu T, Sorajjapinun W (2012) Identification of a new fragrance allele in soybean and development of its functional marker. Mol Breed 29:13–21

    CAS  Google Scholar 

  • Khanh TD, Anh TQ, Buu BC, Xuan TD (2013) Applying molecular breeding to improve soybean rust resistance in Vietnamese elite soybean. Am J Plant Sci 4(1):1–6

    Google Scholar 

  • Kiihl RAS, Hartwig EE (1979) Inheritance of reaction to soybean mosaic virus in soybean. Crop Sci 19:372–375

    Google Scholar 

  • Kim MS, Park MJ, Jeong WH, Nam KC, Chung J (2006) SSR markers tightly linked to the ti locus in soybean [Glycine max (L.) Merr.]. Euphytica 152:361–366

    CAS  Google Scholar 

  • Kitamura K (1991) Spontaneous and induced mutations of seed proteins in soybean (Glycine max L. Merrill). Gamma Field Symposia 30:61–69

    Google Scholar 

  • Kitamura K, Davies CS, Kaizuma N, Nielsen NC (1983) Genetic analysis of a null-allele for lipoxygenase-3 in soybean seeds. Crop Sci 23:924–927

    CAS  Google Scholar 

  • Kitamura K, Kumagai T, Kikuchi A (1985) Inheritance of lipoxygenase-2 and genetic relationships among genes for lipoxygenase-1, -2 and -3 isozymes in soybean seeds. Jpn J Breed 35:413–420

    CAS  Google Scholar 

  • Kong F, Liu B, Xia Z, Sato S, Kim BM (2010) Two coordinately regulated homologues of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong F, Nan H, Cao D, Li Y, Wu F, Wang J (2014) A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci 54:2529–2535

    Google Scholar 

  • Kumar V, Rani A, Tindwani C, Jain M (2003) Lipoxygenases and trypsin inhibitor activity as influenced by growing location. Food Chem 83:79–83

    CAS  Google Scholar 

  • Kumar V, Rani A, Joshi OP (2004) Fatty acid profile of released cultivars of Indian soybean: identification of comparatively low linolenic and high oleic acid cultivars. Indian J Agric Sci 74(7):388–391

    Google Scholar 

  • Kumar V, Rani A, Billore SD, Chauhan GS (2006a) Physico-chemical properties of immature pods of Japanese cultivars grown under Indian conditions. Int J Food Prop 9:51–59

    CAS  Google Scholar 

  • Kumar V, Rani A, Solanki S, Hussain SM (2006b) Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J Food Compos Anal 19:188–195

    CAS  Google Scholar 

  • Kumar V, Rani A, Rawal R, Husain SM, Chauhan GS (2010a) NRC106 (IC0582899, INGR10052) and IC210 (IC0582900; INGR10053): soybean (Glycine max) germplasm lines with high oleic acid content and early maturity. Indian J Plant Genet Resour 24(1):121

    Google Scholar 

  • Kumar V, Rani A, Chauhan GS (2010b) Nutritional value of soybean. In: Singh G (ed) Soybean: the botany, production and uses. CAB International, Wallingford, pp 375–403

    Google Scholar 

  • Kumar V, Rani A, Goyal L, Billore SD, Chauhan GS (2011a) Evaluation of vegetable-type soybean for sucrose, taste-related amino acids and isoflavones content. Int J Food Prop 14:1142–1151

    CAS  Google Scholar 

  • Kumar V, Rani A, Mourya V, Rawal R, Verma K, Shivkumar M, Talukdar A, Lal SK (2011b) Marker assisted selection for development of kunitz trypsin inhibitor free soybean varieties: I: parental polymorphism survey using SSR markers. Indian J Genet Plant Breed 71(4):372–376

    CAS  Google Scholar 

  • Kumar V, Rani A, Mourya V, Rawal R (2012) Parental polymorphism survey of popular soybean varieties in combination with the source of null alleles of kunitz trypsin inhibitor and lipoxygenase-2 using linked SSR markers. Soybean Res Dev 9:72–78

    Google Scholar 

  • Kumar V, Rani A, Rawal R, Husain SM (2013a) Lipoxygenase-2-free Indian soybean (Glycine max L.) genotypes. Curr Sci 104(5):586–587

    Google Scholar 

  • Kumar V, Rani A, Rawal R (2013b) Deployment of gene specific marker in development of kunitz trypsin inhibitor free soybean genotypes. Indian J Exp Biol 51:1125–1129

    CAS  PubMed  Google Scholar 

  • Kumar V, Rani A, Rawal R, Mourya V (2015) Marker assisted accelerated introgression of null allele of Kunitz trypsin inhibitor in soybean. Breed Sci 65:447–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Rani A, Mittal P, Suaib M (2019) Kunitz trypsin inhibitor in soybean: contribution to total trypsin inhibitor activity as a function of genotype and fate during processing. J Food Meas Charact 13(2):1593–1590

    Google Scholar 

  • Kumar V, Rani A, Tiwari SP (2001) Comparative activity of trypsin inhibitor among released cultivars of soybean. Indian Journal of Nutrition and Dietetics 38:437–40

    Google Scholar 

  • Kumar V, Rani A, Rawal R (2014) Identification of simple sequence repeat marker tightly linked to lipoxygenase-2 gene in soybean. Indian J Biotechnology 13:455–458.

    Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    CAS  Google Scholar 

  • Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A (2015) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625–636

    CAS  PubMed  Google Scholar 

  • Lenis JM, Gillman JD, Lee JD, Shannon JG, Bilyeu KD (2010) Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays. Theor Appl Genet 120:1139–1149

    CAS  PubMed  Google Scholar 

  • Li K, Yang QH, Zhi HJ, Gai JY, Yu DY (2010) Identification and distribution of soybean mosaic virus strains in southern China. Plant Dis 94:351–357

    CAS  PubMed  Google Scholar 

  • Li L, Smith JR, Ray JD, Frederick RD (2012) Identification of a new soybean rust resistance gene in PI 567102B. Theor Appl Genet 125(1):133–142

    CAS  PubMed  Google Scholar 

  • Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 14:579–589

    PubMed  PubMed Central  Google Scholar 

  • Li X, Fang C, Xu M, Zhang F, Lu S, Nan H (2017) Quantitative trait locus mapping of soybean maturity gene E6. Crop Sci 57:1–8

    Google Scholar 

  • Lichtenstein AH (1998) Soy protein, isoflavones and cardiovascular disease risk. J Nutr Biol 128:1589–1592

    CAS  Google Scholar 

  • Liener IE (1994) Implications of anti-nutritional components in soybean foods. J Crit Rev Food Sci Nutr 34:31–67

    CAS  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Shuxian L, Swaminathan S, Sahu BB, Leandro LF, Cardinal AJ, Bhattacharyya MK, Song Q, Walker DR, Cianzio SR (2016) Identification of a soybean rust resistance gene in PI 567104B. Theo Appl Genet 129:863–869

    CAS  Google Scholar 

  • Ma G, Chen P, Buss GR, Tolin SA (1995) Genetic characteristics of two genes for resistance to soybean mosaic virus in PI486355 soybean. Theor Appl Genet 91:907–914

    CAS  PubMed  Google Scholar 

  • Ma FF, Wu M, Liu YN, Feng XY, Wu XZ, Chen JQ (2017) Molecular characterization of NBS–LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the soybean mosaic virus. Theo Appl Genet 13:253–265

    Google Scholar 

  • Mandal B, Varma A, Malathi VG (1997) Systemic infection of Vigna mungo using the cloned DNAs of the blackgram isolate Mungbean yellow mosaic geminivirus through agroinoculation and transmission of the progeny virus by whiteflies. J Phytopathol 145:505–510

    Google Scholar 

  • Maroof S, Tucker MA, Jeong SC, Gunduz I, Tucker DM, Buss GR, Tolin SA (2008) Pyramiding of soybean mosaic virus resistance genes by marker-assisted selection. Crop Sci 48:517–526

    CAS  Google Scholar 

  • Maroof S, Tucker MA, Skoneczka DM, Bowman JA, Tripathy S, Tolin SA (2010) Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene, Rsv4. Plant Genome 3:14–22

    Google Scholar 

  • Mclean RJ, Byth DE (1980) Inheritance resistance to rust (Phakopsora pachyrhizi) in soybeans. Aust J Agric Res 31(5):951–956

    Google Scholar 

  • Messina MJ, Persky V, Setchell KD (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21(2):113–131

    CAS  PubMed  Google Scholar 

  • Miles MR, Morel W, Ray JD, Smith JR, Frederick RD, Hartman GL (2008) Adult plant evaluation of soybean accessions for resistance to Phakopsora pachyrhizi in the field and greenhouse in Paraguay. Plant Dis 92(1):96–105

    CAS  PubMed  Google Scholar 

  • Molnar SJ, Rai S, Charette M, Cober ER (2003) Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome 46:1024–1036

    CAS  PubMed  Google Scholar 

  • Monteros MJ, Missaoui AM, Phillips DV, Walker DR, Boerma HR (2007) Mapping and confirmation of the ‘hyuuga’ red-brown lesion resistance gene for Asian soybean rust. Crop Sci 47(8):829–836

    CAS  Google Scholar 

  • Morinaga T, Ikegami M, Miura K (1990) Physical mapping and molecular cloning of mungbean yellow mosaic virus DNA. Intervirology 31:50–56

    CAS  PubMed  Google Scholar 

  • Mahinur S. Akkaya, Randy C. Shoemaker, James E. Specht, Arvind A. Bhagwat, Perry B. Cregan, (1995) Integration of Simple Sequence Repeat DNA Markers into a Soybean Linkage Map. Crop Science 35(5):1439–1445

    Google Scholar 

  • Nariani TK (1960) Yellow mosaic of mung (Phaseolus aureus L.). Indian Phytopathol 13:24–29

    Google Scholar 

  • Nene YL (1972) A survey of the viral diseases of pulse crops in India. Indian J Res Bull 4:191

    Google Scholar 

  • Nene YL (1973) Viral disease of some warm weather crop plants of India. Plant Dis Rep 57:463–467

    Google Scholar 

  • Niu X, Tang W, Huang W, Ren G, Wang Q, Luo D (2008) RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol 8:100–106

    PubMed  PubMed Central  Google Scholar 

  • Nordentoft I, Jeppesen PB, Hong J, Abdula R, Hermansen K (2008) Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic kkAy-mice after feeding with a soybean protein rich diet high in isoflavones content. J Agric Food Chem 56:4377–4385

    CAS  PubMed  Google Scholar 

  • Nunes A, Vianna G, Cuneo F, Amaya-Farfán J, de Capdeville G, Rech E, Aragão F (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125–132

    CAS  PubMed  Google Scholar 

  • O’Dell BL (1982) Dietary factors that affect biological availability of trace elements. Ann NY Acad Sci 199:70–81

    Google Scholar 

  • Oliveira MIP, Piovesan ND, José IC, Barros EG, Moreira MA, Oliveira LO (2007) Protein, oil and isoflavones content in lipoxygenase and Kunitz trypsin inhibitor-deficient soybean seeds. Chromatographia 66:521–527

    Google Scholar 

  • Orf JH, Hymowitz T (1979) Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci 19:107–109

    CAS  Google Scholar 

  • Onesti S, Brick P, Blow DM (1991) Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina coffra seeds. Journal of Molecular Biology 217(1):153–176

    Google Scholar 

  • Peric V, Srebric M, Dragicevic V, Nikolic A, Mikic A, Drinic SM (2014) Development of soybean varieties with specific nutritional composition of grain. J Hyg Eng Des 8:174–177

    Google Scholar 

  • Pham TA, Hill CB, Miles MR, Nguyen BT, Vu TT, Vuong TD, Toai TTV, Nguyen HT, Hartman GL (2010a) Evaluation of soybean for resistance to soybean rust in Vietnam. Field Crop Res 117(1):131–138

    Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010b) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195–203

    PubMed  PubMed Central  Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2011) A novel FAD2-1a allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor Appl Genet 123(5):793–802

    CAS  PubMed  Google Scholar 

  • Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68(6):1375–1379

    Google Scholar 

  • Pretorius ZA, Kloppers FJ, Frederick RD (2001) First report of soybean rust in South Africa. Plant Dis 85:1288

    CAS  PubMed  Google Scholar 

  • Peric, V., Srebric, M., Dragicevic, V., Nicolic, A., Mikic, A. and Drinic, S.M. (2004) Development of soybean varieties with specific nutritional composition of grain. J. Hyg. Eng. Design 8: 174–177

    Google Scholar 

  • Qiu J, Wang Y, Wu S, Wang YY, Ye CY, Bai X (2014) Genome re-sequencing of semi-wild soybean reveals a complex soja population structure and deep introgression. PLoS One 9:e108479

    PubMed  PubMed Central  Google Scholar 

  • Raboy V (2001) Seeds for a better future: “low phytate” grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    CAS  PubMed  Google Scholar 

  • Rani A, Kumar V (2018) ICAR-IISR develops speciality soybean. ICAR News 24(2):21

    Google Scholar 

  • Rani A, Kumar V, Husain SM, Pandey SK, Chauhan GS (2010) NRC101 (IC0582901; INGR10054) and NRC102 (IC582902; INGR10055): soybean (Glycine max) germplasm lines free from Kunitz trypsin inhibitor polypeptide. Indian J Plant Genet Resour 24(1):122

    Google Scholar 

  • Rani A, Kumar V, Mourya V, Singh RK (2011) Validation of SSR markers linked to null kunitz trypsin inhibitor allele in Indian soybean [Glycine max (L.) Merr.] population. J. Plant Biochem Biotechnol 20(2):258–261

    Google Scholar 

  • Rani A, Kumar V, Rawal R (2013) Identification of simple sequence repeat markers linked to lipoxygenase-1 gene in soybean. J Plant Biochem Biotechnol 22(4):488–491

    CAS  Google Scholar 

  • Rani A, Kumar V, Gill BS, Rathi P, Shukla S, Singh RK (2017) Linkage mapping of Mungbean yellow mosaic India virus (MYMIV) resistance gene in soybean. Breed Sci 67:95–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rani A, Kumar V, Gill BS, Shukla S, Rathi P, Singh RK (2018) Mapping of duplicate dominant genes for Mungbean yellow mosaic India virus resistance in Glycine soja. Crop Sci 58:1566–1574

    Google Scholar 

  • Rani A, Kumar V, Mourya V, Tayalkar T (2019) Genomic regions governing the biosynthesis of unsaturated fatty acids in recombinant inbred lines of soybean raised across multiple growing years. J Am Oil Chem Soc 96:1337–1346

    CAS  Google Scholar 

  • Ratnayake WN, Swist E, Zoka R, Gagnon C, Lillycrop W, Pantazapoulos P (2014) Mandatory trans-fat labeling regulations and nationwide product reformulations to reduce trans fatty acid content in foods contributed to lowered concentrations of trans fat in Canadian women’s breast milk samples collected in 2009-2011. Am J Clin Nutr 100(4):1036–1040

    CAS  PubMed  Google Scholar 

  • Redekar NR, Clevinger EM, Laskar MA, Biyashev RM, Ashfield T, Jensen RV (2016) Candidate gene sequence analyses toward identifying Rsv3-type resistance to soybean mosaic virus. Plant Genome 9(2):1–12

    CAS  Google Scholar 

  • Reinprecht Y, LukLabey SY, Larsen J, Poysa VW, Yu K, Rajcan I (2009) Molecular basis of the low linolenic acid trait in soybean EMS mutant line RG10. Plant Breed 128:253–258

    CAS  Google Scholar 

  • Reinprecht Y, Luk-Labey S-Y, Yu K, Poysa VW, Rajcan I, Ablett GR, Pauls KP (2011) Molecular basis of seed lipoxygenase null traits in soybean line OX948. Theor Appl Genet 122:1247–1264

    CAS  PubMed  Google Scholar 

  • Rossi RL (2003) First report of Phakopsora pachyrhizi, the causal organism of soybean rust in the province of Misiones, Argentina. Plant Dis 87:102

    CAS  PubMed  Google Scholar 

  • Saghai Maroof MA, Natasha M. Glover, Ruslan M. Biyashev, Glenn R. Buss, Elizabeth A. Grabau, (2009) Genetic Basis of the Low-Phytate Trait in the Soybean Line CX1834. Crop Science 49(1):69–76

    Google Scholar 

  • Samanfar B, Molnar SJ, Charette M, Schoenrock A, Dehne F, Golshani A et al (2017) Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet 130:377–390

    CAS  PubMed  Google Scholar 

  • Schaefer MJ, Love J (1992) Relationships between soybean components and tofu texture. J Food Qual 15:53–66

    CAS  Google Scholar 

  • Schlueter JA, Sanders IFV, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC (2007) The FAD2 gene family of soybean. Crop Sci 47:12–26

    Google Scholar 

  • Shanmugasundaram S, Cheng ST, Huang MT, Yan MR (1991) In: Shanmugasundaram S (ed) Quality requirement and improvement of vegetable soybean in vegetable soybean: research needs for production and quality improvement. Asian Vegetable Research and Development Center, Shanhua, pp 30–42

    Google Scholar 

  • Shi A, Chen P, Li DX, Zheng C, Hou A, Zhang B (2008) Genetic confirmation of 2 independent genes for resistance to soybean mosaic virus in J05 soybean using SSR markers. J Hered 99(6):598–603

    CAS  PubMed  Google Scholar 

  • Shi A, Chen P, Li D, Zheng C, Zhang B, Hou A (2009) Pyramiding multiple genes for resistance to soybean mosaic virus using molecular markers. Mol Breed 23:113–124

    CAS  Google Scholar 

  • Shi A, Chen P, Vierling R, Zheng C, Li D, Dong D (2011) Multiplex single nucleotide polymorphism (SNP) assay for detection of soybean mosaic virus resistance genes in soybean. Theor Appl Genet 122:445–457

    CAS  PubMed  Google Scholar 

  • Sijia L et al (2017) Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49(5):773–779

    Google Scholar 

  • Singh BB, Mallick AS (1978) Inheritance of resistance to yellow mosaic in soybean. Indian J Genet Plant Breed 38:258–261

    Google Scholar 

  • Singh LC, Wilson M, Handley HH (1969) Genetic differences in soybean trypsin inhibitor separated by disc electrophoresis. Crop Sci 9:489–491

    CAS  Google Scholar 

  • Solomon NW (1982) Biological availability of zinc in humans. Am J Clin Nutr 35:1048–1075

    Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suh SJ, Bowman BC, Jeong N, Yang K, Kastl C, Tolin SA et al (2011) The Rsv3 locus conferring resistance to soybean mosaic virus is associated with a cluster of coiled-coil nucleotide-binding leucine-rich repeat genes. Plant Genome 4:55–64

    Google Scholar 

  • Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T (2011) GmFT2a, a soybean homologue of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One 6(12):e29238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, BB, Singh BD, Gupta SC (1974) Resistant lines for yellow mosaic of soybean PI 171443 and G. formosana. Soybean Genetics Newsl. 1:17–18

    Google Scholar 

  • Thapa R, Colon MC, Quaye CA, Held J, Dilkes B, Hudson KA (2018) New alleles of FAD3A lower the linolenic acid content of soybean seeds. Crop Sci 58(2):713–718

    CAS  Google Scholar 

  • Tsai WS, Shih SL, Rauf A, Safitri R, Hidayati N, Huyen BTT, Kenyon L, (2013) Genetic diversity of legume yellow mosaic begomoviruses in Indonesia and Vietnam. Annals of Applied Biology:n/a-n/a

    Google Scholar 

  • United State Department of Agriculture (2019) Oilseeds: world market and trade. https://apps.fas.usda.gov/psdonline/circulars/oilseeds

  • Usharani KS, Surendranath B, Haq QM, Malathi VG (2004) Yellow mosaic virus infecting soybean in northern India is distinct from the species infecting soybean in southern and western India. Curr Sci 86:845–850

    CAS  Google Scholar 

  • Vaintraub IA, Bulmaga VP (1991) Effect of phytate on the in vitro activity of digestive enzymes. J Food Sci 50:1139–1142

    Google Scholar 

  • Valliyodan B, Qiu D, Patil G, Zeng P, Huang J, Dai L (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Report 6:23598

    CAS  Google Scholar 

  • Varma A, Dhar AK, Mandal B (1992) MYMV transmission and control in India. In: Green SK, Kim D (eds) Mungbean yellow mosaic disease. Proceedings of an international workshop, Bangkok, Thailand, 2–3 July 1991. Asian Vegetable Research and Development Center, Shanhua, pp 8–27

    Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P, Ellis N (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34(1–3):169–194

    Google Scholar 

  • Vuong TD, Sonah H, Meinhardt CG, Deshmukh R, Kadam S, Nelson RL (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16:593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DR, Scaboo AM, Pantalone VR, Wilcox JR, Boerma HR (2006) Genetic mapping of loci associated with seed phytic acid content in CX1834-1-2 soybean. Crop Sci 46:390–397

    CAS  Google Scholar 

  • Wang TC, Hartman GL (1992) Epidemiology of soybean rust and breeding for host resistance. Plant Prot Bull 34:109–124

    Google Scholar 

  • Wang WH, Takano T, Shibata D, Kitamura K, Takeda G (1994) Molecular basis of a null mutation in soybean lipoxygenase 2: substitution of glutamine for an iron-ligand histidine. Proc Natl Acad Sci U S A 91:5828–5832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XQ, Gai JY, Pu ZQ (2003) Classification and distribution of strains of soybean mosaic virus in middle and lower Huanghuai and Changjiang river valleys. Soybean Sci 22:102–107

    Google Scholar 

  • Wang YJ, Dongfang Y, Wang XQ, Yang YL, Yu DY, Gai JY et al (2004) Mapping of five genes resistant to SMV strains in soybean. Acta Genet Sin 31:87–90

    CAS  PubMed  Google Scholar 

  • Wang Y, Wu C, Zhang X, Wang Y, Han TF (2008) Effects of soybean major maturity genes under different photoperiods. Acta Agron Sin 34:1160–1168

    CAS  Google Scholar 

  • Wang D, Ma Y, Yang Y, Liu N, Li C, Song Y et al (2011) Fine mapping and analyses of R (SC8) resistance candidate genes to soybean mosaic virus in soybean. Theor Appl Genet 122:555–565

    PubMed  Google Scholar 

  • Wang J, Chu S, Zhang H, Zhu Y, Cheng H, Yu D (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Report 6:20728

    CAS  Google Scholar 

  • Washburn CF, Thomas JF (2000) Reversion of flowering in Glycine max (Fabaceae). Am J Bot 87:1425–1438

    CAS  PubMed  Google Scholar 

  • Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N (2011) A map based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox JR, Premachandra GS, Young KA, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605

    Google Scholar 

  • Wilson LA (1996) Comparison of lipoxygenase-null and lipoxygenase-containing soybeans for foods. In: Piazza G (ed) Lipoxygenase enzymes and lipoxygenase pathway enzymes. AOCS Press, Champaign, pp 209–225

    Google Scholar 

  • Wu C, Ma Q, Yam K, Cheung MY, Xu Y, Han T, Lam HM, Chong K (2006) In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta 223:725–735

    CAS  PubMed  Google Scholar 

  • Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H et al (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci 109(32):E2155–E2164

    CAS  PubMed  Google Scholar 

  • Yadav RK, Shukla RK, Chattopadhyay D (2009) Soybean cultivar resistant to Mungbean yellow mosaic India virus infection induces viral RNA degradation earlier than the susceptible cultivar. Virus Res 144:89–95

    CAS  PubMed  Google Scholar 

  • Yan H, Wang H, Cheng H, Hu Z, Chu S, Zhang G, Yu D, (2015) Detection and fine‐mapping of SC7 resistance genes via linkage and association analysis in soybean. Journal of Integrative Plant Biology 57(8):722–729

    Google Scholar 

  • Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K (2005) Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet 110:634–639

    CAS  PubMed  Google Scholar 

  • Yamanaka N, Morishita M, Mori T, Lemos NG, Hossain MM, Akamatsu H, Kato M, Yamaoka Y (2015) Multiple Rpp-gene pyramiding confers resistance to Asian soybean rust isolates that are virulent on each of the pyramided genes. Trop Plant Pathol 40:283–290

    Google Scholar 

  • Yang QH, Gai JY (2011) Identification, inheritance and gene mapping of resistance to a virulent soybean mosaic virus strain SC15 in soybean. Plant Breed 130:128–132

    CAS  Google Scholar 

  • Yorinori JT, Paiva WM, Frederick RD, Costamilan LM, Bertagnoli PF, Hartman GL, Godoy CV, Nunes JJ (2005) Epidemics of soybean rust (Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Dis 89:675–677

    CAS  PubMed  Google Scholar 

  • Yu K, Woodrow L, Poysa V (2016) Registration of lipoxygenase free food grade soybean Germplasm, HS-151. Can J Plant Sci 96:148–150

    CAS  Google Scholar 

  • Yu YG, Saghai MA, Maroof GR, Buss PJ, Maughan & SA, Tolin 1994. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology 84:60–64.

    Google Scholar 

  • Zeng X, Liu H, Du H et al (2018) Soybean MADS-box gene GmAGL1 promotes flowering via the photoperiod pathway. BMC Genomics 19(1):51

    PubMed  PubMed Central  Google Scholar 

  • Zhai H, Lü S, Liang S, Wu H, Zhang X, Liu B, Kong F, Yuan X, Li J, Xia Z (2014) GmFT4, a homologue of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One 9:e89030

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Nelson RL, Wang X (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16:217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao SW, Wang H (1992) A new electrophoretic variant of SBTi-A2 in soybean seed protein. Soybean Genet Newsl 19:22–24

    Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W et al (2015) Re-sequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    CAS  Google Scholar 

  • Zhu J, Takeshima R, Harigai K, Xu M, Kong F, Liu B et al (2018) Loss of function of the E1-Like-b gene associates with early flowering under long-day conditions in soybean. Front Plant Sci 9:1867

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, A., Kumar, V. (2020). Translational Genomics and Breeding in Soybean. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-47306-8_11

Download citation

Publish with us

Policies and ethics