Skip to main content

Accelerated Breeding of Cowpea [Vigna unguiculata (L.) Walp.] for Improved Yield and Pest Resistance

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

Cowpea [Vigna unguiculata (L.) Walp.] (2n = 22) is one of the important legume crops used as pulse, vegetable and fodder. Cowpeas are rich in protein, fibre, vitamins and minerals. The centre of origin of cowpea is Africa. There exists a large amount of diversity in Vigna unguiculata subspecies complex with 11 subspecies and the only cultivated one being Vigna unguiculata ssp. unguiculata. The improved bush varieties of cowpea are of short duration and fit better in cropping systems of rice and wheat, making it a part of sustainable agriculture. The worldwide production of cowpea is 7.41 million tonnes with an average productivity of 589 kg/ha which indicates that there is a large scope for improvement of cowpea yield through development and effective dissemination of improved varieties. The major breeding objectives of cowpea are breeding for improved yield, protein content and resistance to pests mainly cowpea golden mosaic disease, Cercospora leaf spot, anthracnose, bruchids and legume pod borer. The sources of resistance to all these pests except legume pod borer were available in cultivated genotypes, making them crossable and leading to the development of resistant varieties. For legume pod borer, the resistance source is available in wild relatives of Vigna spp. which is not crossable with the cultivated cowpea that led to development of transgenic cowpeas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abutu A (2017) Brighter Days for African Farmers-As Pod-Borer Resistant Cowpea Edge Towards Commercialisation. Available from: https://aatfnews.aatfafrica.org/?p=669

  • Agbicodo EM, Fatokun CA, Muranaka S, Visser RGF, Der CGLV (2009) Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 167:353–370. https://doi.org/10.1007/s10681-009-9893-8

    Article  Google Scholar 

  • Amatriain M M, Mirebrahim H, Xu P et al. (2017) Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J 89:1042–1054

    Google Scholar 

  • Anand RP, Ganapathi A, Ramesh A, Vengadesan G, Selvaraj N (2000) High frequency plant regeneration via somatic embryogenesis in cell suspension cultures of cowpea (Vigna unguiculata L. Walp). In Vitro Cell Dev Biol Plant 36:475–480

    CAS  Google Scholar 

  • Anthony JM, Senaratna T, Dixon KW, Sivasithamparam K, Bunn E (1999) In vitro regeneration of recalcitrant Australian plants. In Vitro Cell Dev Biol 35:1062

    Google Scholar 

  • Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob Food Sec 12:31–37

    PubMed  PubMed Central  Google Scholar 

  • Barro A, De La Salle TJB, Dieni Z, Kiebre Z, Poda L, Sawadogo M (2016) Inheritance and the allelic relationship of resistance to Cowpea Aphid Borne Mosaic Virus (CABMV) in two cowpea genotypes, KVX640 and KVX396-4-5-2D, in Burkina Faso. Int J Curr Microbiol App Sci 5(8):285–292

    Google Scholar 

  • Bata HD, Singh BB, Singh SR, Landeinde TAO (1987) Inheritance of resistance to aphid in cowpea. Crop Sci 27:892–894

    Google Scholar 

  • Bett B, Gollasch S, Moore A, James W, Armstrong J, Walsh T, Harding R, Higgins TJV (2017) Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip3Ba protein are protected against the Maruca pod borer (Maruca vitrata). Plant Cell Tissue Org Cult 131:335–345

    CAS  Google Scholar 

  • Booker HM, Umaharan P (2007) Identification of resistance to Cercospora leaf spot of cowpea. Eur J Plant Pathol 118:401–410

    Google Scholar 

  • Booker HM, Umaharan P (2008) Quantitative resistance to Cercospora leaf spot disease caused by Pseudocercospora cruenta in cowpea. Euphytica 162:167–177

    Google Scholar 

  • Boukar O, Abdoulaye T, Tam M, Agrama H, Tefera H, Fatokun C Boahen S (2012) A success tale on improving two legume crops in Africa. http://r4dreview.iita.org/index.php/tag/cowpea/

  • Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, Haruna M, Diallo S, Umar ML, Olufajo O, Fatokun C (2018) Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed 138:415. https://doi.org/10.1111/pbr.12589

    Article  Google Scholar 

  • Bruening G, Ponz F, Glascock C, Russell ML, Rowhani A, Chay C (1987) Resistance of cowpeas to cowpea mosaic virus and to tobacco ringspot virus. In: Evered D, Harnett S (eds) Plant resistance to viruses. Wiley, Chichester, pp 23–37

    Google Scholar 

  • Chakraborti AK (1986) Cowpea. In: Bose TK, Som MG, Kabir J (eds) Vegetable crops. Naya Prakash, Calcutta, pp 603–611

    Google Scholar 

  • Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng EH (2019) Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet 132:627–645

    PubMed  PubMed Central  Google Scholar 

  • Crous PW, Braun U (2003) Mycospaerella and its anamorphs: 1. Names published in Cercospora and Passalora. Centraalbureau voor Schimmelcultures (CBS), Utrecht

    Google Scholar 

  • de Jimenez CCM, Borges FOL, Debrot CEA (1989) Herencia de la resistancia del frijol (Vigna Unguiculata [L.] Walp.). al virus del mosaico severo del caupi. Fitopatologia Venezolana 2(1):5–9. (English summary)

    Google Scholar 

  • Deighton FC (1976) Studies on Cercospora and allied genera. VI. Pseudocercospora Speg., Pantospora Cif. And Cercoseptoria Petr. Mycol Pap 140:1–168

    Google Scholar 

  • Dumet D, Fatokun C (2010) Global strategy for the conservation of cowpea (Vigna unguiculata subsp. Unguiculata). Document by International Institute for Tropical Agriculture

    Google Scholar 

  • Eastwell KC, Kiefer MC, Bruening G (1983) Immunity of cowpeas to cowpea mosaic virus. In: Goldberg RB (ed) Plant molecular biology. UCLA Symposia on molecular and cell biology, New series, vol XII. Alan R. Liss, New York, pp 201–211

    Google Scholar 

  • Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679. https://doi.org/10.2135/cropsci1996.0011183X003600030026x

    Article  Google Scholar 

  • Eloward HO, Hall AE (1987) Influence of early and late nitrogen fertilization on yield and nitrogen fixation of cowpea under well-watered and dry field conditions. Field Crop Res 15:229–244

    Google Scholar 

  • FAOSTAT (2019) FAOSTAT, Statistical data base. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Fatokun C (2009) Designer (Cowpea) plants. Accessed on 16 Nov 2019 from http://r4dreview.iita.org/index.php/2009/03/08/designer-cowpea-plants/

  • Fery RL (1980) Genetics of Vigna. In: Janick J (ed) Horticultural reviews. AVI Publishing, Westport, pp 311–394

    Google Scholar 

  • Fery RL (1985) The genetics of cowpea. A review of the world literature. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 25–62

    Google Scholar 

  • Fery RL, Singh BB (1997) Cowpea genetics: a review of recent literature. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. Co-publication of IITA and JIRCAS, IITA, Ibadan/Tsukuba, pp 13–29

    Google Scholar 

  • Fery RL, Dukes PD, Cuthbert FP Jr (1977) Yield loss of southern pea (Vigna unguiculata) caused by Cercospora leaf spot. Plant Dis Rep 61(9):741–743

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:151–158

    Google Scholar 

  • Gomes AMF, Nhantumbo N, Pinto MF, Massinga R, Ramalho JC, Barros AR (2019) Breeding elite cowpea [Vigna unguiculata (L.) Walp] varieties for improved food security and income in Africa: opportunities and challenges. Conference Proceedings. Intech Open. http://dx.doi.org/10.5772/intechopen.84985

  • Green SK (1991) Guidelines for diagnostic work in plant virology. AVRDC technical bulletin, vol 15. AVRDC, Taipei

    Google Scholar 

  • Hazra P, Chattopadhaya A, Dasgupta T, Kar N, Das PK, Som MG (2007) Breeding strategy for improving plant type, pod yield and protein content in vegetable cowpea (Vigna unguiculata). Acta Hortic 752:275–280

    Google Scholar 

  • Hitiksha KP, Acharya RR, Patel SR (2014) Interrelationship among green pod yield and its yield contributing characters and biochemical characters vegetable cowpea [Vigna unguiculata L. (Walp.)]. Trends Biosci 7(23):3972–3976

    Google Scholar 

  • Khalid II, Elharadallou SB (2013) Functional properties of cowpea (Vigna unguiculata L. Walp), and Lupin (Lupinus termis) flour and protein isolates. J Nutr Food Sci 3:1–6

    Google Scholar 

  • Kirse A, Karklina D (2015) Integrated evaluation of cowpea (Vigna unguiculata (L.) Walp.) and maple pea (Pisum sativum var. arvense L.) spreads. Agron Res 13:956–968

    Google Scholar 

  • Klopez (2009) Is genetically modified cowpea safe? Available from http://r4dreview.iita.org/index.php/2009/03/08/640/. Accessed 16 Nov 2019

  • Kumar K, Dahiya SB, Rish N (1994) Inheritance to cowpea yellow MOSAIc virus in cowpea (Vigna unguiculata (L.) Walp.). In: Rishi N, Ahuja KL, Singh BP (eds) Virology in the tropics. Malhotra Publishing House, New Delhi

    Google Scholar 

  • Lachyan TS, Desai SS, Dalvi VV (2016) Inheritance study of qualitative and quantitative characters in cowpea varieties (Vigna unguiculata (L.) Walp.). Electron J Plant Breed 7(3):708–713. https://doi.org/10.5958/0975-928X.2016.00091.0

    Article  Google Scholar 

  • Liyanage R, Perera OS, Wethasinghe P, Jayawardana BC, Vidanaarachchi JK, Sivaganesan R (2014) Nutritional properties and antioxidant content of commonly consumed cowpea cultivars in Sri Lanka. J Food Legum Indian J Pulses Res 27:215–217

    Google Scholar 

  • Lonardi S, Amatriaın MM, Liang Q, Shu S, Wanamaker SI, Lo S, Tanskanen J, Schulman AH, Zhu T, Luo MC, Alhakami H, Ounit R, Hasan AM, Verdier J, Roberts PA, Santos JRP, Ndeve A, Dolezell J, Vrana J, Hokin SA, Farmer AD, Cannon SB, Close TJ (2019) The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J 98:767–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes FCC, Gomes RLF, Filho FRF (2003) Genetic control of cowpea seed sizes. Sci Agric 60(2):315–318. https://doi.org/10.1590/S0103-90162003000200016

    Article  Google Scholar 

  • Lopez K (2019) News crop: Cowpea. https://www.iita.org/news-crop/cowpea/

  • Lucas M R, Diop N N, Wanamaker S, Ehlers J D, Roberts P A and Close T J (2011) Cowpea-soybean synteny clarified through an improved genetic map. Plant Genome 4: 218–224. https://doi.org/10.3835/plantgenome2011.06.0019

  • Marechal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un groupe complexe d’especes des genres Phaseolus et Vigna (Papilionaceae) sur la base de donnees morphologiques et polliniques, traitees par l’analyse informatique. Boissiera 28:1–273

    Google Scholar 

  • Melton A, Ogle WL, Barnett OW, Caldwell JD (1987) Inheritance of resistance to viruses in cowpeas. Phytopathology 77:642. (Abstract)

    Google Scholar 

  • Mithen R and Kibblewhite H (1993) Taxonomy and ecology of Vigna unguiculata (Leguminosae-Papilionoideae) in South Central Africa. Kirkia 14(1):100–113

    Google Scholar 

  • Mohammed BS, Ishiyaku MF, Abdullahi US, Katung MD (2015) Genetics of cry1ab transgene in transgenic cowpea. Prod Agric Technol 11(1):108–116

    Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muchero W, Diop NN, Bhat PR et al (2009) A consensus genetic map of cowpea Vigna unguiculata (L) Walp. and synteny based on EST derived SNPs. Proc Natl Acad Sci U S A 106:18159–18164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muchero W, Roberts PA, Diop NN, Drabo I, Cisse N, Close TJ, Muranaka S, Boukar O, Ehlers JD (2013) Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE 8:e70041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mudryj AN, Yu N, Hartman TJ, Mitchell DC, Lawrence FR, Aukema HM (2012) Pulse consumption in Canadian adults influences nutrient intakes. Br J Nutr 108:27–36

    Google Scholar 

  • Munoz-Amatriain M, Mirebrahim H, Xu P, Wanamaker SI, Luo M, Alhakami H, Alpert M, Atokple I, Batieno BJ, Boukar O, Bozdag S, Cisse N, Drabo I, Ehlers JD, Farmer A, Fatokun C, Gu YQ, Guo YN, Huynh BL, Jackson SA, Kusi F, Lawley CT, Lucas MR, Ma Y, Timko MP, Wu J, You F, Barkley NA, Roberts PA, Lonardi S, Close TJ (2017) Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J 89:1042–1054

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Mustapha Y, Singh BB (2008) Inheritance of pod colour in cowpea (Vigna unguiculata (L.) Walp.). Sci World J 3(2):39–42

    Google Scholar 

  • OECD (2016) Cowpea (Vigna unguiculata). In: Safety assessment of transgenic organisms in the environment, Volume 6: OECD consensus documents. OECD Publishing, Paris

    Google Scholar 

  • Ofuya TI (1987) Susceptibility of some Vigna species to infestation and damage by CaJlosobruchus maculatus (F.). J Stored Prod Res 23:137–138

    Google Scholar 

  • Ombakho GA, Tyagi Ap, Pathak RS (1987) Inheritance of resistance to the cowpea aphid in cowpea. Theror Appl Genet 74:817–819

    CAS  Google Scholar 

  • Orawu M, Melis R, Laing M, Derera J (2013) Genetic inheritance of resistance to cowpea aphid-borne mosaic virus in cowpea. Euphytica 189:191–201. https://doi.org/10.1007/s10681-012-0756-3

    Article  CAS  Google Scholar 

  • Ouattara S, Chambish OL (1991) Inheritance of resistance to blackeye cowpea mosaic virus in “White acre-BVR” cowpea. HortScience 26:194–196

    Google Scholar 

  • Padulosi S (1993) Genetic diversity, taxonomy, and ecogeographic survey of the wild relatives of cowpea (Vigna unguiculata (L.) Walpers). Thesis, University Catholique de Louvain-La-Neuve, Louvain

    Google Scholar 

  • Padulosi S, Ng NQ (1997) Origin, taxonomy and morphology of Vigna unguiculata (L.) Walp. In: Singh BB, Mohan-Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS). IITA, Ibadan

    Google Scholar 

  • Palmer JL, Lawn RJ, Adkins SW (2002) An embryo-rescue protocol for Vigna interspecific hybrids. Aust J Bot 50:331–338

    Google Scholar 

  • Pandey RN, Dhanasekar P (2004) Morphological features and inheritance of foliaceous stipules of primary leaves in cowpea (Vigna unguiculata). Ann Bot 94:469–471. https://doi.org/10.1093/aob/mch161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant KC, Chandel KPS, Joshi BS (1982) Analysis of diversity in Indian cowpea genetic resources. SABRAO J 14:103–111

    Google Scholar 

  • Pasquet RS (1993a) Classification infraspecifique des formes spontanées de Vigna unguiculata (L.) Walp. à partir des données morphologiques. Bulletin du Jardin Botanique National deBelgique 62(1/4):127–173. https://doi.org/10.2307/3668271

    Article  Google Scholar 

  • Pasquet RS (1993b) Two new subspecies of Vigna unguiculata (L.) Walp. Kew Bull 48:805–806

    Google Scholar 

  • Pasquet RS (1997) A new subspecies of Vigna unguiculata. Kew Bull 52(4):840. https://doi.org/10.2307/4117815

    Article  Google Scholar 

  • Pasquet RS (1998) Morphological study of cultivated cowpea Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv. gr Melanophthalmus. Agronomie 18(1): 61–70. http://dx.doi.org/10.1051/agro:19980104

  • Pasquet R S (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theoretical and Applied Genetics 98 (6): 1104–1119

    Google Scholar 

  • Patel PN (1981) Pathogen variability and host resistance to three races of the bacterial pustule pathogen in cowpea. Trop Agric (Trinidad) 58:275–280

    Google Scholar 

  • Patel PN, Mligo JK, Leyna HK, Kuwit C, Mmbaga ET (1982) Source of resistance, Inheritance and breeding of cowpea for resistance to a strain of cowpea aphid-born mosaic virus from Tanzania. Indian J Genet 42:221–229

    Google Scholar 

  • Pathak RS (1988) Genetics of resistance to aphid in cowpea. Crop Sci 28:474–476

    Google Scholar 

  • Pathmanathan U, Rasiah PA, Syed QH (1997) Genetic analysis of yield and its components in vegetable cowpea (Vigna unguiculata L. Walp). Euphytica 96(2):207–213

    Google Scholar 

  • Ponz F, Russell ML, Rowhani A, Bruening G (1988) A cowpeas line has distinct genes for resistance to tobacco ringspot virus and cowpea mosaic virus. Phytopathology 78:1124–1128

    Google Scholar 

  • Pottorff MO, Li G, Ehlers JD, Close TJ, Roberts PA (2014) Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea Vigna unguiculata (L.) Walp. Mol Breed 33:779–791

    CAS  PubMed  Google Scholar 

  • Pradhan D, Mathew D, Mathew SK, Nazeem PA (2018) Identifying the markers and tagging a leucine-rich repeat receptor-like kinase gene for resistance to anthracnose disease in vegetable cowpea [Vigna unguiculata (L.) Walp.]. J Hortic Sci Biotechnol 93(3):225–231

    CAS  Google Scholar 

  • Raveendar S, Premkumar A, Sasikumar S, Ignacimuthu S, Agastian P (2009) Development of a rapid, highly efficient system of organogenesis in cowpea Vigna unguiculata (L.) Walp. S Afr J Bot 75:17–21

    Google Scholar 

  • Rodrigues MA, Santos CAF, Santana JRF (2012) Mapping of AFLP loci linked to tolerance to cowpea golden mosaic virus. Genet Mol Res 11(4):3789–3797

    CAS  PubMed  Google Scholar 

  • Rusoke DG, Fatunla T (1987) Inheritance of pod and seed resistance to the cowpea seed beetle (Callosobruchus maculatus Fabr.). J Agric Sci (Camb) 108:655–660

    Google Scholar 

  • Sangwan SR, Rish N (2004) Genetics of resistance to cowpea yellow mosaic virus in cowpea (Vigna unguiculata (L.) Walp.). Indian J Mycol Plant Pathol 34:620–622

    Google Scholar 

  • Santos AAD, Freire-Filho FR (1984) Reducao da producao do feijao massacar causado pelo vírus do mosqueado amarelo. Fitopatol Bras 9:407

    Google Scholar 

  • Schneider RW, Williams RJ, Sinclair JB (1976) Cercospora leaf spot of cowpea: models for estimating yield loss. Phytopathology 66:384–388

    Google Scholar 

  • Sebetha ET, Modi AT, Owoeye LG (2014) Cowpea crude protein as affected by cropping system, site and nitrogen fertilization. J Agric Sci 7:224–234

    Google Scholar 

  • Singh B B, Chambliss O L, Sharma B (1997). Recent advances in cowpea. In: Singh B.B., Mohan-Raj D.R., Dashiel K.E., Jackai L.E.N. (Eds.). Advances in cowpea research.Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS), Ibadan, Nigeria 30–49

    Google Scholar 

  • Singh BB (2002) Recent genetic studies in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World cowpea conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, 4–8 Sept 2000. IITA, Ibadan, pp 3–13

    Google Scholar 

  • Singh DB, Reddy PP (1986) Inheritance of resistance to root-knot nematode in cowpea. Indian J Nematol 16:284–285

    CAS  Google Scholar 

  • Singh BB, Singh SR (1985) Breeding for bruchid resistance in cowpea. In: Fujii K, Gatehouse AMR, Johnson CD, Mitchel R, Yoshida T (eds) Bruchids and legumes: economics, ecology and coevolution. Proceedings of the second international symposium on bruchids and legumes (ISBL-2) held at Okayama, 6–9 Sept 1989

    Google Scholar 

  • Singh BB, Singh SR, Adjadi O (1985) Bruchid of resistance in cowpea. Crop Sci 25:736–739

    Google Scholar 

  • Singh J, Kalloo G, Singh KP (2001) Vegetable crops: nutritional security. Indian Institute of Vegetable Research, Varanasi, p 56

    Google Scholar 

  • Smartt J (1990) The old world pulses: Vigna species. In: Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge, pp 140–175

    Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa LL, Cruz AS, Vidigal Filho PS, Vallejo VA, Kelly JD, Gonçalves-Vidigal MC (2014) Genetic mapping of the resistance allele Co-52 to Colletotrichum lindemuthianum in the common bean MSU 7-1 line. Aust J Crop Sci 8:317–323

    Google Scholar 

  • Sousa LL, Gonçalves AO, Gonçalves-Vidigal MC, Lacanallo GF, Fernandez AC, Awale H, Kelly JD (2015) Genetic characterization and mapping of anthracnose resistance of common bean landrace cultivar Corinthiano. Crop Sci 55:1900–1910. https://doi.org/10.2135/cropsci2014.09.0604

    Article  CAS  Google Scholar 

  • Subbiah A, Prabhu M, Rajangam J, Jagadeesan R, Anbu S (2013) Genetic analysis of vegetable cowpea [Vigna unguiculata (L.) Walp.]. Legum Res 36(1):1–9

    Google Scholar 

  • Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Chen X (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9:103

    PubMed  PubMed Central  Google Scholar 

  • Trehan I, Benzoni NS, Wang AZ, Bollinger LB, Ngoma TN, Chimimba UK et al (2015) Common beans and cowpeas as complementary foods to reduce environmental enteric dysfunction and stunting in Malawian children: study protocol for two randomized controlled trials. Trials 16:520

    PubMed  PubMed Central  Google Scholar 

  • Verdcourt B (1970) Studies in the leguminosae-Papilionoideae for the ‘flora of tropical East Africa’: IV. Kew Bull 24(3):507–569. www.jstor.org/stable/4102859

    Google Scholar 

  • Winter S, Butgereitt A, Thottappilly G (2002) Cowpea golden mosaic virus and related geminiviruses associated with Vigna spp. in Nigeria. Poster presentation. Intern Virology Congress

    Google Scholar 

  • Yang H, Tao Y, Zheng Z, Li C, Sweetingham MW, Howieson JG (2012) Application of next generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13:318–328. https://doi.org/10.1186/1471-2164-13-318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, B.R., Nagendran, K., Singh, B., Singh, P.M., Singh, J., Pandey, M. (2020). Accelerated Breeding of Cowpea [Vigna unguiculata (L.) Walp.] for Improved Yield and Pest Resistance. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_15

Download citation

Publish with us

Policies and ethics