Skip to main content

Accelerated Breeding in Cucumber Using Genomic Approaches

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

Cucumber (Cucumis sativus L.) is an important crop grown worldwide for its immature fruits. Conventional breeding methodologies were instrumental in developing improved varieties with several desirable traits. In the last two decades, very systematic efforts were made after wide application of molecular tools and availability of draft genome sequence of this crop. The cultivated genotypes of cucumber are originated from the wild type, C. sativus var. hardwickii, widely distributed in the northern foothills of Himalayas. This wild progenitor possesses several desirable traits related to fruit yield and stress tolerance. However, bitterness due to the presence of cucurbitacins in this wild species restricts its utilization in cucumber improvement programme. It was found that three major and two minor genes are responsible for sex expression in cucumber, and it is possible to manipulate the sex ratio to develop cultivars with higher fruit yield. A large number of molecular markers were developed and identified related to different stress resistance and important agronomic traits to accelerate the genomics-based breeding in cucumber. Significant progress has been made to develop complete homozygous lines through induction of haploids through both androgenesis and gynogenesis. However, application of high-throughput phenotyping, induced mutation and rapid generation cycling through greenhouse cultivation and in vitro flowering are the areas need to be focussed for future speed breeding strategies in cucumber. The available genomics-based information will be instrumental in the future accelerated breeding of cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalders LE (1959) ‘Yellow Cotyledon’, a new cucumber mutation. Can J Cytol 1:10–12

    Google Scholar 

  • Abdollahi MR, Najafi S, Sarikhani H, Moosavi SS (2016) Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Plant Cell Rep 35:1991–2019

    Google Scholar 

  • Abul-Hayja Z, Williams PH, Peterson CE (1978) Inheritance of resistance to anthracnose and target leaf spot in cucumbers. Plant Dis Rep 62:43–45

    Google Scholar 

  • Agrawal AA, Janssen A, Bruin J, Posthumus MA, Sabelis MW (2002) An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol Lett 5:377–385

    Google Scholar 

  • Andeweg JM, DeBruyn JW (1959) Breeding of non-bitter cucumbers. Euphytica 8:13–20

    Google Scholar 

  • Angelov D (1994) Inheritance of resistance to downy mildew, Pseudoperonospora cubensis (Berk. & Curt.) Rostow. Rep. 2nd National Symposium. Plant Immunity (Plovdiv) 3:99–105

    Google Scholar 

  • Ari E, Ikten H, Gocmen M, Coskun R, Eren A (2010) Comparative evaluation of different embryo rescue techniques on parthenogenetic melon (Cucumis melo L.) fruits induced with irradiated pollen. Afr J Biotechnol 9(33):5347–5356

    Google Scholar 

  • Ashok Kumar HG, Murthy HN (2004) Effect of sugars and amino acids on androgenesis of Cucumis sativus L. Plant Cell Tissue Organ Cult 78:201–208

    Google Scholar 

  • Ashok Kumar HG, Murthy HN, Paek KY (2003) Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L. Sci Hortic 98:213–222

    CAS  Google Scholar 

  • Ashok Kumar HG, Ravishankar BV, Murthy HN (2004) The influence of polyamines on androgenesis of Cucumis sativus L. Eur J Hortic Sci 69:201–205

    Google Scholar 

  • Bai SL, Peng YB, Cui JX, Gu HT, Xu LY, Li YQ, Xu ZH, Bai SN (2004) Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230–240

    CAS  PubMed  Google Scholar 

  • Bai Z, Yuan X, Cai R, Liu L, He H, Zhou H, Pan J (2008) QTL analysis of downy mildew resistance in cucumber. Prog Nat Sci 18:706–710. (in Chinese)

    CAS  Google Scholar 

  • Balkema-Boomstra AG, Zijlstra S, Verstappen FW, Inggamer H, Mercke PE, Jongsma MA, Bouwmeester HJ (2003) Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). J Chem Ecol 29:225–235

    CAS  PubMed  Google Scholar 

  • Barnes WC, Epps WM (1952) Two types of anthracnose resistance in cucumbers. Plant Dis Rep 36:479–480

    Google Scholar 

  • Barnes WC, Epps WM (1954) A unreported type of resistance to cucumber downy mildew. Plant Dis Rep 38:620

    Google Scholar 

  • Barnes WC, Epps WM (1955) Progress in breeding cucumbers resistant to anthracnose and downy mildew. Proc Am Soc Hortic Sci 65:409–415

    Google Scholar 

  • Barnes WC, Epps WM (1956) Powdery mildew resistance in South Carolina cucumbers. Plant Dis Res 40:1093

    Google Scholar 

  • Berg JA, Appiano M, Martínez MS et al (2015) A transposable element insertion in the susceptibility gene CsaMLO8 results inhypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol 15:243

    PubMed  PubMed Central  Google Scholar 

  • Block CC, Reitsma KR (2005) Powdery mildew resistance in the US National plant germplasm system cucumber collection. Hortic Sci 40:416–420

    Google Scholar 

  • Bo K, Wei S, Wang W, Han M, Dong S, Zhang S, Gu X (2019) QTL mapping and genome-wide association study reveal two novel loci associated with green flesh color in cucumber. BMC Plant Biol 19:243. https://doi.org/10.1186/s12870-019-1835-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borlaug N (2002) Feeding a world of 10 billion people: the miracle ahead. In vitro Cell Devel Biol Plant 38:221–228

    Google Scholar 

  • Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One 4:e6144

    PubMed  PubMed Central  Google Scholar 

  • Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, Fraenkel-Zagouri R, Kovalski I, Dogimont C, Perl-Treves R, Bendahmane A (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350:688–691

    CAS  PubMed  Google Scholar 

  • Calderon-Urrea A, Dellaporta SL (1999) Cell death and cell protection genes determine the fate of pistils in maize. Development 126:435–441

    CAS  PubMed  Google Scholar 

  • Caldwell D, Chan E, de Vries J et al (2011) Methods and compositions for identifying downy mildew resistant cucumber plants. United States patent US 2011/0126309 A1

    Google Scholar 

  • Call AD, Wehner TC (2010) Search for resistance to the new race of downy mildew in cucumber. Cucurbitaceae 2010 Proceeding. ASHS Press, Alexandria, pp 112–115

    Google Scholar 

  • Carlsson G (1961) Studies of blind top shoot and its effect on the yield of greenhouse cucumbers. Acta Agr Scand 11:160–162

    Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang L et al (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569. Published 2010 Oct 15. https://doi.org/10.1186/1471-2164-11-569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JF, Staub JE, Tashiro Y, Isshiki S, Miyazaki S (1997) Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica 96:413–419

    Google Scholar 

  • Chen YH, Fu XM, Wu H, Zang J (2012) CsACO4, an ACC oxidase gene regulating male differentiation in cucumber. Afr J Biotechnol 11:13069–13074

    CAS  Google Scholar 

  • Chen H, Sun J, Li S, Cui Q, Zhang H, Xin F, Wang H, Lin T, Gao D, Wang S, Li X, Wang D, Zhang Z, Xu Z, Huang S (2016) An ACC oxidase gene essential for cucumber carpel development. Mol Plant 9:1315–1327

    CAS  PubMed  Google Scholar 

  • Chi X, Gu X, Zhang S, Wang X, Wang Y (2007) Identification of molecular markers linked to foliage non-bitterness gene (bi) in Cucumis sativus L. Acta Hortic Sin 34:1177–1182

    CAS  Google Scholar 

  • Chung SM, Staub JE, Chen JF (2006) Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49:219–229

    CAS  PubMed  Google Scholar 

  • Clark LR (1975) Powdery mildew resistance in plant introductions of cucumber in Iowa. Plant Dis Rep 59:1024–1028

    Google Scholar 

  • Claveria E, Garcia-Mas J, Dolcet-Sanjuan R (2005) Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hortic Sci 130(4):555–560

    Google Scholar 

  • Cochran FD (1938) Breeding cucumbers for resistance to downy mildew. Proc. Amer. Soc. Hort. Sci. 35:541–543

    Google Scholar 

  • Criswell AD (2008) Screening for downy mildew resistance in cucumber. M. S. thesis, North Carolina State University, Raleigh

    Google Scholar 

  • Delorme VG, McCabe PF, Kim DJ, Leaver CJ (2000) A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol 123:917–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • den Nijs APM, de Ponti OMB (1983) Umbrella leaf: a gene for sensitivity to low humidity in cucumber. Cucurbit Genet. Coop. Rpt. 6:24

    Google Scholar 

  • Ding G, Qin Z, Zhou X, Fan J (2007) RAPD and SCAR markers linked to downy mildew resistance genes in cucumber. Acta Botan Boreali-Occiden Sin 27:1747–1751. (in Chinese)

    CAS  Google Scholar 

  • Doruchowski RW, Lakowska-Ryk E (1992) Inheritance of resistance to downy mildew (Pseudoperonospora cubensis Berk & Curt) in Cucumis sativus. In: Doruchowski RW, Kozik E, NiemirowiczSzczytt K (eds) Proceedings of 5th EUCARPIA symposium, pp 132138, 2731 July, Warsaw. Published by Research Institute of Vegetables Crops, and Warsaw University of Agriculture, Warsaw

    Google Scholar 

  • Duvick DN (1986) Plant breeding past achievements and expectations for the future. Econ Bot 40:289–297

    Google Scholar 

  • El Jack A, Munger H (1983) Two sources conferring partial dominant resistance to powdery mildew (Sphaerotheca fuliginea Poll.) in cucumber. Cucurbit Genet Coop Rep 6:7–8

    Google Scholar 

  • El-Hafaz A, El-Din B, El-Doweny HH, Awad MMW (1990) Inheritance of downy mildew resistance and its nature of resistance in cucumber. Ann Agric Sci Moshtohor 28(3):1681–1697

    Google Scholar 

  • Fanourakis NE, Simon PW (1987) Analysis of genetic linkage in the cucumber. J Hered 78:238–242

    Google Scholar 

  • Fehr WR (1984) Genetic contribution to yield gains in five major crop plants. Crop Sci Soc Am 7:9. isbn 978-0-89118-586-4

    Google Scholar 

  • Forster BP, Shu Q (2012) Plant mutagenesis in crop improvement: basic terms and applications. In: Shu Q, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology, vol C01. CABI, Wallingford, pp 9–20

    Google Scholar 

  • Fugieda K, Akiya Y (1962) Genetic study of powdery mildew resistance and spine color on fruit in cucumber. J Jpn Soc Hortic Sci 31:30–32. https://doi.org/10.2503/jjshs.31.30

    Article  Google Scholar 

  • Fukino N, Yoshioka Y, Sugiyama M et al (2013) Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed 32:267–277

    CAS  Google Scholar 

  • Galun E (1961) Study of the inheritance of sex expression in the cucumber. The interaction of major genes with modifying genetic and non-genetic factors. Genetica 32:134–163

    Google Scholar 

  • Ge’mes-Juha’sz A, Balogh P, Ferenczy A, Kristo’f Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21(2):105–111

    Google Scholar 

  • Ge’mesne-Juha’sz A, Venczel G, Balogh P (1997) Haploid plant induction in zucchini (Cucurbita pepo L. convar. Giromontiina Duch) and in cucumber (Cucumis sativus L.) lines through in vitro gynogenesis. Acta Hortic 447:623–625

    Google Scholar 

  • Goode MJ, Browers JL (1973) Breeding anthracnose resistance in cucumber. Phytopathology 63:442

    Google Scholar 

  • Gu X, Zhang S, Zhang S (2006) The AFLP markers linked with the bitter fruit gene (Bt) in cucumber. Acta Hortic Sin 33:140–142

    CAS  Google Scholar 

  • Hao YJ, Wang DH, Peng YB, Bai SL, Xu LY, Li YQ, Xu ZH, Bai SN (2003) DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.). Planta 217:888–895

    CAS  PubMed  Google Scholar 

  • Harlan JR (1992) Crops and man. Am Soc Agron Crop Sci 284

    Google Scholar 

  • He X, Li Y, Pandey S, Yandell BS et al (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161. https://doi.org/10.1007/s00122-013-2125-6

    Article  CAS  PubMed  Google Scholar 

  • Horejsi T, Staub JE, Thomas C (2000) Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 115:105–113

    CAS  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009a) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B et al (2009b) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2011) Genomic data for the domestic cucumber (Cucumis sativus var. sativus L.). GigaScience Database. https://doi.org/10.5524/100025

  • Hutchins AE (1940) Inheritance in the cucumber. J Agr Res 60:117–128

    Google Scholar 

  • Iida S, Amano E (1990) Pollen irradiation to obtain mutants in monoecious cucumber. In: Gamma field Symp, 29:95–111

    Google Scholar 

  • Iida S, Amano E (1991) Mutants induced by pollen irradiation in cucumber. Cucurbit Genet Coop Rpt 14:32–33

    Google Scholar 

  • Inggamer H, de Ponti OMB (1980) The identity of genes for glabrousness in Cucumis sativus L. Cucurbit Genet. Coop. Rpt. 3:14

    Google Scholar 

  • John CA, Wilson JD (1952) A “ginko leafed” mutation in the cucumber. J Hered 43:47–48

    Google Scholar 

  • Kano Y, Goto H (2003) Relationship between the occurrence of bitter fruit in cucumber and the contents of total nitrogen, amino acid nitrogen, protein, and HMG-CoA reductase activity. Sci Hortic 98:1–8

    CAS  Google Scholar 

  • Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ (1994) Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet 89:42–48

    CAS  Google Scholar 

  • Klosinska U, Kozik EU, Wehner TC (2006) Inheritance of a new trait - twin fused fruit - in cucumber. HortScience 41:313–314

    CAS  Google Scholar 

  • Kooistm E (1971) Inheritance of flesh and skin colors in powdery mildew resistance cucumber (Cucummis sativas L). Euphytica 20:521–523

    Google Scholar 

  • Kooistra E (1968) Powdery mildew resistance in cucumber. Euphytica 17:236–244

    Google Scholar 

  • Kooistra E (1971) Inheritance of flesh and skin colors in powdery mildew resistant cucumbers (Cucumis sativus L. ). Euphytica 20:521–523

    Google Scholar 

  • Kozik EU, Klosin’ska U, Call AD, Wehner TC (2013) Heritability and genetic variance estimates for resistance to downy mildew in cucumber accession Ames 2354. Crop Sci 53:177–182

    Google Scholar 

  • Kubicki B (1969a) Investigations of sex determination in cucumber (Cucumis sativus L.). IV. Multiple alleles of locus Acr. Genetica Polonica 10:23–68

    Google Scholar 

  • Kubicki B (1969b) Investigation of sex determination in cucumber (Cucumis sativus L.). VI. Androecism. Genet Pol 10:87–99

    Google Scholar 

  • Kubicki B (1969c) Investigation of sex determination in cucumber (Cucumis sativus L.). VII Trimonoecism. Genet Pol 10:123–143

    Google Scholar 

  • Kubicki B (1974) New sex types in cucumber and their uses in breeding work. Proc XIX Intl Hort Congr 3:475–485

    Google Scholar 

  • Kubicki B, Goszczycka I, Korzeniewska A (1984) Induced mutations in cucumber (Cucumis sativus L.) II. Mutant of gigantism. Genetica Polonica 25:41–52

    Google Scholar 

  • Li SJ, Wang HZ, Huo ZR, Guan W (2008) Development of SCAR marker linked to cucumber anthracnose resistance-related gene from an AFLP marker. Acta Hortic Sin 35:123–126. (in Chinese)

    Google Scholar 

  • Li Z, Huang S, Liu S, Pan J, Zhang Z, Tao Q, Shi Q, Jia Z, Zhang W, Chen H, Si L, Zhu L, Cai R (2009) Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381–1385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Gong Y, Miao H, Wu J, Gu X, Zhang S, Wang X (2010) Fine mapping of the foliage bitterness gene (Bi) in Cucumis sativus. Acta Hortic Sin 37:1073–1078

    CAS  Google Scholar 

  • Linde DC, Bridges WC, Rhodes BB (1990) Inheritance of resistance in cucumber to race 2 of Colletotrichum lagenarium. Theor Appl Genet 79:13–16

    CAS  PubMed  Google Scholar 

  • Liu LZ, He HL, Pan JS (2008) Genetic test of resistance to powdery mildew for cucumber germplasm R17. Resour Utiliz 27:46–48

    Google Scholar 

  • Lofti M, Salehi S (2008) Detection of cucumber parthenogenic haploid embryos by floating the immature seeds in liquid medium. In: Cucurbitaceae 2008, Pitrat M (ed) Proceedings of IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, 21–24 May, Avignon, pp 375–380

    Google Scholar 

  • Lofti M, Kashi A, Onsinejad R (1999) Induction of parthenogenetic embryos by irradiated pollen in cucumber. Acta Hortic 492:323–326

    Google Scholar 

  • Lofti M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and double haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21(11):1121–1128

    Google Scholar 

  • Lu HW, Miao H, Tian GL, Wehner TC, Gu XF, Zhang SP (2015) Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Mol Breed 35:64. https://doi.org/10.1007/s11032-015-0263-z

    Article  CAS  Google Scholar 

  • Meglic V, Staub JE (1996) Inheritance and linkage relationships between allozyme and morphological loci in cucumber (Cucumis sativusL.). Theor Appl Genet 92:865–872

    CAS  PubMed  Google Scholar 

  • Malepszy S, Niemirowicz-Szczytt K (1991) Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Sci 80:39–47

    Google Scholar 

  • Mao AJ, Zhang F, Zhang HY, Zhang LR et al (2005) Inheritance of resistance to powdery mildew in two cucumber varieties. Zhongguo Nongxue Tongbao 21:302–305

    Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    CAS  PubMed  Google Scholar 

  • Mengnan X, Shenhao W, Shu Z, Quinzhi C, Dongli G, Huiming C, Huang S (2015) A new gene conferring the Glabrous trait in cucumber identified using MutMap. Horticultural Plant Journal 29–34

    Google Scholar 

  • Mibus H, Tatlioglu ĆT (2004) Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theor Appl Genet 109:1669–1676

    CAS  PubMed  Google Scholar 

  • Miller JC Jr, Quisenberry JE (1978) Inheritance of flower bud abortion in cucumber. HortScience 13:44–45

    Google Scholar 

  • Morishita M, Sugiyama K, Saito T, Sakata Y (2003) Powdery mildew resistance in cucumber. JARQ 37(1):7–14. https://doi.org/10.6090/jarq.37.7

  • Nandgaonkar AK, Baker LR (1981) Inheritance of multi-pistillate flowering habit in gynoecious pickling cucumber. J Amer Soc Hort Sci 106:755–757

    Google Scholar 

  • Nie J, He H, Peng J et al (2015a) Identification and fine mapping of pm 5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed 35:7

    Google Scholar 

  • Nie J, Wang Y, He H et al (2015b) Loss-of-Function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front Plant Sci 6:1–14

    CAS  Google Scholar 

  • Niemirowicz-Szczytt K, Dumas de Vaulx R (1989) Preliminary data on haploid cucumber (Cucumis sativus L.) induction. Cucurbit Genet Coop 12:24–25

    Google Scholar 

  • Osipowski P, Wojcieszek M, Pawełkowicz M, Skarzyńska A, Koren S, Lomsadze A, Wóycicki R, Pląder W, Yagi K, Borodovsky M, Malepszy S, Przybecki Z (2016) Progress in assembling the cucumber (Cucumis sativus) Borszczagowski B10 line genome using long single molecule, real-time reads. In: Cucurbitaceae 2016, XIth Eucarpia Meeting on Cucurbit Genetics & Breeding, July 24–28, 2016, Warsaw, Poland, pp 72–74 ref 17

    Google Scholar 

  • Pan J, Tan J, Wang Y, Zheng X, Owens K, Li D, Li Y, Weng Y (2018) STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theor Appl Genet 131:1577–1587

    CAS  PubMed  Google Scholar 

  • Pang X, Zhou X, Wan H, Chen J (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol 161:536–543

    Google Scholar 

  • Pawełkowicz M, Osipowski P, Wojcieszek M et al (2012) Identification and characterization of genes connected with flower morphogenesis in cucumber. Biotechnologia 93:123–134

    Google Scholar 

  • Pershin AF, Medvedeva NI, Medvedev AV (1988) Quantitative approach to studying the genetics of disease resistance. IV. Interaction of the genetic systems for resistance to powdery and downy mildews in cucumber. Geneticka, USSR. (abstract only) 24(3):484–493

    Google Scholar 

  • Peterson GC, Pike LM (1992) Inheritance of green mature seed-stage fruit color in Cucumis sativus L. J. Amer. Soc. Hort. Sci. 117:643–645

    Google Scholar 

  • Petrov L, Boodert K, Sheck L, Baider A, Rubin E, Cohen Y, Katzir N, Paris HS (2000) Resistance to downy mildew, Pseudoperonospora cubensis, in cucumbers. Acta Hortic 510:203–209

    Google Scholar 

  • Phillips DR, Rasbery JM, Bartel B, Matsuda SP (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314

    CAS  PubMed  Google Scholar 

  • Pike LM, Peterson CE (1969) Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.). Euphytica 18:101–105

    Google Scholar 

  • Poole CF (1944) Genetics of cultivated cucurbits. J Hered 35:122–128

    Google Scholar 

  • Pyzenkov VI, Kosareva GA (1981) A spontaneous mutant of the dwarf type. Bul Applied Bot Plant Breeding 69:15–21

    Google Scholar 

  • Przyborowski J, Niemirowicz-Szczytt K (1994) Main factors affecting cucumber (Cucumis sativus L.) haploid embryo development and haploid plant characteristics. Plant Breed 112:70–75

    Google Scholar 

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y et al (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    CAS  PubMed  Google Scholar 

  • Robinson RW (1987) Chlorosis induced in glabrous cucumber by high temperature. Cucurbit Genet. Coop. Rpt. 10:7

    Google Scholar 

  • Robinson RW, Decker-Walter DS (1999) Cucurbits. CAB International, Wallingford

    Google Scholar 

  • Robinson RW, Mishanec W (1965) A new dwarf cucumber. Veg Imp Nwsl 7:23

    Google Scholar 

  • Robinson RW, Munger HM, Whitaker TW, Bohn GW (1976) Genes of the Cucurbitaceae. HortScience 11:564–568

    Google Scholar 

  • Robinson RW, Shail JW (1981) A cucumber mutant with increased hypocotyl and internode length. Cucurbit Genet. Coop. Rpt. 4:19–20

    Google Scholar 

  • Rowe JT, Bowers JL (1965) The inheritance and potential of an irradiation induced tendrilless character in cucumbers. Proc. Amer. Soc. Hort. Sci. 86:436–441

    Google Scholar 

  • Sakata Y, Kubo N, Morishita M et al (2006a) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112:243–250

    CAS  PubMed  Google Scholar 

  • Sakata Y, Kubo N, Morishita M, Kitadani E et al (2006b) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112:243–250. https://doi.org/10.1007/s00122-005-0121-1

    Article  CAS  PubMed  Google Scholar 

  • Sari N, Solmaz I, Kasapoglu S, Gursoy I, Szamosi C, Unlu H et al (2010) Effect of different pollination dates with irradiated pollens on fruit set, haploid embryo induction and plant obtention in Turkish (Kirkagac, Yuva and Hasanbey) melons. Acta Hortic 871:639–648

    Google Scholar 

  • Sauton A (1989) Haploid gynogenesis in Cucumis sativus induced by irradiated pollen. Rep Cucurbit Genet Coop 12:22–23

    Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A 107:14269–14273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S et al (2014) Biosynthesis, regulation, and domesticationof bitterness in cucumber. Science 346:1084–1088

    CAS  PubMed  Google Scholar 

  • Shanmugasundarum S, Williams PH, Peterson CE (1971) Inheritance of resistance to powdery mildew in cucumber. Phytopathology 61:1218–1221. https://doi.org/10.1094/Phyto-61-1218

    Article  Google Scholar 

  • Shifriss O (1950) Spontaneous mutations in the American varieties of Cucumis sativus L. Proc Amer Soc Hort Sci 55:351–335

    Google Scholar 

  • Shetty N, van Kooten H, Sipeyre B et al (2014) Downy Mildew resistant cucumber plants. United States patent US 8859859 B2

    Google Scholar 

  • Shibuya M, Adachi S, Ebizuka Y (2004) Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 60:6995–7003

    Google Scholar 

  • Shimizu S, Kanazawa K, Kato A, Yokota Y, Koyama T (1963) Studies on the breeding of cucumber for the resistance to downy mildew and other fruit characters. Engei Shikenjo ho koku (abstract only) 2:65–81

    Google Scholar 

  • Smith PG (1948) Powdery mildew resistance in cucumber. Phytopathology 39:1027–1028

    Google Scholar 

  • Soltysiak U, Kubicki B (1988) Induced mutations in the cucumber (Cucumis sativus L.). VII. Short hypocotyl mutant. Genetica Polonica 29:315–321

    Google Scholar 

  • Song H, Lou QF, Luo XD, Wolukau J, Diao WP, Qian CT, Chen JF (2007) Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L). Plant Cell Tiss Organ Cult 90:245–254

    CAS  Google Scholar 

  • Staub JE, Knerr LD, Holder DJ, May B (1997a) Phylogenetic relationships among several African Cucumis species. Can J Bot 70:509–517

    Google Scholar 

  • Staub JE, Box J, Meglic V, Horejsi TF, McCreight JD (1997b) Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet Res Crop Evol 44:257–269

    Google Scholar 

  • Strong WJ (1931) Breeding experiments with the cucumber (Cucumis sativus L.). Sci Agr 11:333–346

    Google Scholar 

  • Suprunova T, Shmykova N (2008) In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. In: Pitrat M (ed) Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon, pp 371–374

    Google Scholar 

  • Szczechura W, Staniaszek M, Klosinska U, Kozik E (2015) Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et Curt.) Rostovzev in cucumber. Russ J Genet 51:974–979

    CAS  Google Scholar 

  • Sztangret-Wiśniewska J, Gałecka T, Korzeniewska A, Marzec L, Kołakowska G, Piskurewicz U et al. (2006) Characteristics of double-haploid cucumber (Cucumis sativus L.) lines resistant to downy mildew (Pseudoperonospora cubensis [Berk. et Curt.] Rostovzev). In: Proceedings of Cucurbitaceae 2006. Holmes GJ (ed) Raleigh, pp 515–526

    Google Scholar 

  • Tkachenko NN (1935) Preliminary results of a genetic investigation of the cucumber, Cucumis sativus L. Bul. Applied Plant Breeding, Ser. 2(9):311–356

    Google Scholar 

  • Trebitsh T, Staub JE, O’Neill SD (1997) Identification of a 1- aminocyclopropane-1-carboxylic acid synthase gene linked to the Female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Troung-Andre I (1988) In vitro haploid plants derived from pollination by irradiated pollen of cucumber. In: Proceedings of Eucarpia meet cucurbit. Avignon-Monfavet, pp 143–144

    Google Scholar 

  • Vakalounakis DJ (1992) Heart leaf, a recessive leaf shape marker in cucumber: linkage with disease resistance and other traits. J Hered 83:217–221

    Google Scholar 

  • Van Vliet GJA, Meysing WD (1974) Inheritance of resistance toPseudoperonospora cubensis Rost. In cucumber (Cucumis sativus L.). Euphytica 23:251–255

    Google Scholar 

  • Venkatesh J, Song K, Lee JH, Kwon JK, Kang BC (2018) Development of bi gene-based SNP markers for genotyping for bitter-free cucumber lines. Hortic Environ Biotechnol 59:231–238

    CAS  Google Scholar 

  • Walters SA, Shetty NV, Wehner TC (2001) Segregation and linkage of several genes in cucumber. J Am Soc Hortic Sci 126:442–450

    CAS  Google Scholar 

  • Wang HJ, Li SJ, Liu XF, Li P, Huo ZR, Guan W (2007) AFLP markers of cucumber anthracnose resistance-related gene. Acta Hortic Sin 34:213–216. (in Chinese)

    CAS  Google Scholar 

  • Wang DH, Li F, Duan QH, Han T, Xu ZH, Bai SN (2010) Ethylene perception is involved in female cucumber flower development. Plant J 61:862–872

    CAS  PubMed  Google Scholar 

  • Wang Y, VandenLangenberg KM, Wehner TC et al (2016) QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129:1493–1505

    CAS  PubMed  Google Scholar 

  • Wang Y, VandenLangenberg K, Wen C, Wehner TC, Weng Y (2018) QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theor Appl Genet 131:597–611

    CAS  PubMed  Google Scholar 

  • Whelan EDP (1971) Golden cotyledon: a radiation-induced mutant in cucumber. HortScience 6:343

    Google Scholar 

  • Whelan EDP (1973) Inheritance and linkage relationship of two radiation-induced seedling mutants of cucumber. Can J Genet Cytol 15:597–603

    Google Scholar 

  • Wilson JM (1968) The relationship between scab resistance and fruit length in cucumber, Cucumis sativus L.M.S. Thesis. Cornell Univ, Ithaca, NY

    Google Scholar 

  • Wóycicki R, Witkowicz J, Gawroński P, Dąbrowska J, Lomsadze A, Pawełkowicz M et al (2011) The genome sequence of the north-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One 6(7):e22728. https://doi.org/10.1371/journal.pone.0022728

  • Wyszogrodzka A, Williams P, Peterson C (1987) Multiple-pathogen inoculation of cucumber (Cucumis sativus) seedlings. Plant Dis 71:275

    Google Scholar 

  • Yang L, Min C, Fuquan L et al (2000) Carpel of cucumber (Cucumis sativus L.) male flowers maintains early primordia characteristics during organ development. Chin Sci Bull 8:729–733

    Google Scholar 

  • Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276

    CAS  Google Scholar 

  • Youngner VB (1952) A study of the inheritance of several characters in the cucumber. Ph.D. Diss. Univ. of Minnesota, St. Paul

    Google Scholar 

  • Zhan Y, Chen JF, Malik AA (2009) Embryoid induction and plant regeneration of cucumber (Cucumis sativus L.) through microspore culture. Acta Hortic Sin 36(2):221–226

    CAS  Google Scholar 

  • Zhang GH, Du SL, Wang M, Ma DH (2004) AFLP markers of cucumber powdery mildew resistance-related gene. Yuan Yi Xue Bao 31:189–192

    Google Scholar 

  • Zhang SQ, Gu XF, Zhang SP, Zou ZR (2005) The genetic mechanism of resistance to powdery mildew in cucumber. Yuan Yi Xue Bao 32:899–901

    Google Scholar 

  • Zhang S, Miao H, Cheng Z, Zhang Z, Wu J, Sun R, Gu X (2011) The insertion-deletion (Indel) marker linked to the fruit bitterness gene (bt) in cucumber. J Agric Biotechnol 19:649–653

    CAS  Google Scholar 

  • Zhang S, Liu MM, Miao H et al (2013a) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    CAS  PubMed  Google Scholar 

  • Zhang S, Miao H, Sun R, Wang X, Huang S, Wehner TC, Gu X (2013b) Localization of a new gene for bitterness in cucumber. J Hered 104:134–139

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhou Y, Ding L, Wu Z, Liu R, Meyerowitz EM (2013) Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 family genes in Arabidopsis. Plant Cell 25:83–101. https://doi.org/10.1105/tpc.112.107854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zijlstra S, Groot SPC (1992) Search for novel genes for resistance to powdery mildew (Sphaerotheca fuliginea) in cucumber (Cucumis sativus). Euphytica 64:31–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, S.S., Behera, T.K., Bhatia, R., Munshi, A.D. (2020). Accelerated Breeding in Cucumber Using Genomic Approaches. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_10

Download citation

Publish with us

Policies and ethics