Skip to main content

Major Paradigm Shifts in Potato Breeding

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

Potato is the third most important food crop after wheat and rice, and India is the second largest producer of potatoes after China. Globally all breeding efforts in potato were directed at tetraploid levels and are primarily based on biparental crossing followed by selection. The major constrains in potato breeding are autopolyploid inheritance and heterozygous nature of the crop. Earlier attempts to develop homozygous parental lines at the diploid level failed due to high inbreeding depression and self-incompatibility. The homozygosity in diploids by inbreeding is expected to be much faster than tetraploids, but the only issue was self-incompatibility. The occurrence of natural self-incompatibility inhibitors, i.e., sli gene in different wild/semi-cultivated species, has paved the way for developing diploid homozygous parental lines for further exploitation of hybrid vigour. Now many firms including Solynta are in advanced stage of trialing and release of diploid inbred lines with yields equivalent to tetraploid potato varieties. These results have set an agenda to all potato R&D institutions to bred and release diploid potato varieties with favourable alleles of genomic and economic interests. Besides, marker-assisted breeding, genomic selection and genome editing are other important tools reshaping the conventional breeding in potatoes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allard RW (1999) History of plant population genetics. Annu Rev Genet 33:1–27

    CAS  PubMed  Google Scholar 

  • Andersson M et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISP-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    CAS  PubMed  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932. https://doi.org/10.3389/fpls.2017.01932

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker H (1996) Inheritance of resistance to potato viruses Y and a in progeny obtained from potato cultivars containing gene Ry: evidence for a new gene for extreme resistance to PVA. Theor Appl Genet 93:710–716

    CAS  PubMed  Google Scholar 

  • Bradshaw JE (2009) Potato breeding at the Scottish plant Breeding Station and the Scottish crop research institute: 1920–2008. Potato Res 52:141–172

    Google Scholar 

  • Bradshaw JE, MacKay GR (1994) Breeding strategies for clonally propagated crops. In: Bradshaw JE, MacKay GR (eds) Potato Genetics. CAB International, Wallingford, pp 467–497

    Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLOS One 10:e0144591

    PubMed  PubMed Central  Google Scholar 

  • Butler NM, Jiang J, Stupar RM (2018) Crop improvement using genome editing. Plant Breeding Review 41:55–101

    Google Scholar 

  • Carroll CP (1982) A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. J Agric Sci 99:631–640

    Google Scholar 

  • Chakrabarti SK, Singh BP, Thakur G, Tiwari JK, Kaushik SK, Sharma S, Bhardwaj V (2014) QTL mapping underlying resistance to late blight in a diploid potato family of Solanum spegazzinii × S. chacoense. Potato Res 57:1–11

    Google Scholar 

  • Chase SS (1963a) Analytic breeding in Solanum tuberosum L. -a scheme utilizing parthenotes and other diploid stocks. Can J Genet Cytol 5:389–395

    Google Scholar 

  • Chase SS (1963b) Analytic breeding of amphipolyploid plant varieties. Crop Sci 4:334–337

    Google Scholar 

  • Cockerham G (1970) Genetical studies on resistance to potato viruses X and Y. Heredity 25:309–348

    Google Scholar 

  • Dalamu BV, Umamaheshwari R, Sharma R, Kaushik SK, Joseph TA, Singh BP, Gebhardt C (2012) Potato cyst nematode (PCN) resistance: genes, genotypes and markers-an update. SABRAO J Breed Genet 44(2):202–228

    Google Scholar 

  • De Maine MJ (1996) An assessment of true potato seed families of Solanum phureja. Potato Res 39:323–332

    Google Scholar 

  • Endelman JB, Jansky SH (2016) Genetic mapping with an inbred line-derived F2 population in potato. Theor Appl Genet 129:935–943

    CAS  PubMed  Google Scholar 

  • Endelman JB, Carley CAS, Bethke PC, Coombs JJ, Clough ME et al (2018) Genetic variance partitioning and genome-wide prediction with allele dosage information in autotetraploid potato. Genetics 209:77–87

    PubMed  PubMed Central  Google Scholar 

  • Gopal J (2015) Challenges and way-forward in selection of superior parents, crosses and clones in potato breeding. Potato Res 58:165–188

    Google Scholar 

  • Habyarimana E, Parisi B, Mandolino G (2017) Genomic prediction for yields, processing and nutritional quality traits in cultivated potato (Solanum tuberosum L.). Plant Breed 136:245–252. https://doi.org/10.1111/pbr.12461

    Article  CAS  Google Scholar 

  • Hamalainen JH, Sorii VA, Watanabe KN, Gebhardt C, Valkonen JPT (1998) Molecular examination of a chromosome region that controls resistance to potato Y and a potyviruses in potato. Theor Appl Genet 96:1036–1043

    CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12. https://doi.org/10.2135/cropsci2008.08.0512

    Article  CAS  Google Scholar 

  • Hutten R (1994) Basic aspects of potato breeding via the diploid level. PhD Thesis, Wageningen, p 93

    Google Scholar 

  • Jansky SH, Spooner DM (2018) The evolution of potato breeding. Plant Breed Rev 41:169–214

    Google Scholar 

  • Jansky S, Bethke P, Spooner DM (2014a) Yield gains in potato: contributing factors and future prospects. In: Smith S, Diers B, Carver B, Specht J (eds) Yield gains in major U.S. field crops. Crop Science Society of America, Madison, pp 195–217

    Google Scholar 

  • Jansky S, Chung Y, Kittipadukal P (2014b) M6: a diploid potato inbred line for use in breeding and genetics research. J Plant Reg 8:195–199

    Google Scholar 

  • Jansky SH, Dawson J, Spooner DM (2015) How do we address the disconnect between genetic and morphological diversity in germplasm collections? Am J Bot 102:1213–1215

    CAS  PubMed  Google Scholar 

  • Kaushik SK, Sharma R, Garg ID, Singh BP, Chakrabarti SK, Bhardwaj V, Pandey SK (2013) Development of a triplex (YYYy) parental potato line with extreme resistance to potato virus Y using marker assisted selection. J Hortic Sci Biotechnol 88:580–584

    CAS  Google Scholar 

  • Kim HJ, Lee HR, Jo KR, Mortazavian SMM, Huigen DJ, Evenhuis B, Kessel G, Visser RGF, Jacobsen E, Vossen JH (2012) Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor Appl Genet 124:923–935

    CAS  PubMed  Google Scholar 

  • Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, vanEck HJ (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312

    Google Scholar 

  • MacKay G (2005) Propagation by traditional breeding methods. In: Razdan M, Mattoo A (eds) Genetic improvement of Solanaceae crops, volume 1, potato. Science Publishers, Inc., Enfield, pp 65–81

    Google Scholar 

  • Mikami M, Toki S, Endo M (2015) comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88:561–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola A et al (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24

    Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    CAS  PubMed  Google Scholar 

  • Ovchinnikova A, Krylova E, Gavrilenko T, Smekalova T, Zhuk M, Knapp S, Spooner DM (2011) Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Bot J Linn Soc 165:107–155

    Google Scholar 

  • Phumichai C, Mori M, Kobayashi A, Kamijima O, Hosaka K (2005) Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome 48:977–984

    CAS  PubMed  Google Scholar 

  • Pushkarnath (1976) Potato in sub-tropics. Orient Longman Ltd., New Delhi, p 289

    Google Scholar 

  • Rodriguez FE, Douches D, Lopez-Cruz M, Coombs J, de los Campos G (2018) Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (Solanum tuberosum). G3 Genes Genomes Genet 8:2471–2481

    Google Scholar 

  • Rowe PR (1967) Performance and variability of diploid and tetraploid potato families. Am Potato J 44:263–271

    Google Scholar 

  • Sanford JC (1983) Ploidy manipulations. In: Moore JN, Janick J (eds) Methods in fruit breeding. Purdue University Press, Purdue, pp 100–123

    Google Scholar 

  • Sawai S et al (2014) Sterol side chain reductase 2 is key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds N (1997) A review of potato propagation by means of seed, as distinct from clonal propagation by tubers. Euphytica 40:191–214

    Google Scholar 

  • Slater AT, Cogan NOI, Forster JW, Hayes BJ, Daetwyler HD (2016) Improving genetic gain with genomic selection in autotetraploid potato. Plant Genome 9:3

    Google Scholar 

  • Spooner DM (2016) Species delimitations in plants: lessons learned from potato taxonomy by a practicing taxonomist. J Syst Evol 54:191–203

    Google Scholar 

  • Spooner DM, Nunez J, Trujillo G, Herrera MDR, Guzman F, Ghislain M, Nunez J, del Rosario HM, Guzma F (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major re-evaluation of their gene pool structure and classification. Proc Natl Acad Sci U S A 104:19398–19403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Gavrilenko T, Jansky SH, Ovchinnikova A, Krylova E, Knapp S, Simon R (2010) Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota). Am J Bot 97:2049–2060

    PubMed  Google Scholar 

  • Stich B, Van Inghelandt D (2018) Prospects and potential uses of genomic prediction of key performance traits in tetraploid potato. Front Plant Sci 9:159. https://doi.org/10.3389/fpls.2018.00159

    Article  PubMed  PubMed Central  Google Scholar 

  • Sverrisdóttir E, Byrne S, Sundmark EHR, Johnsen HO, Kirk HG et al (2017) Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing. Theor Appl Genet 130:2091–2108

    PubMed  PubMed Central  Google Scholar 

  • Sverrisdottir E, Sundmark EHR, Johnsen HO, Kirk HG, Asp T, Janss L, Bryan G, Nielsen KL (2018) The value of expanding the training population to improve genomic selection models in tetraploid potato. Front Plant Sci 9:1118. https://doi.org/10.3389/fpls.2018.01118

    Article  PubMed  PubMed Central  Google Scholar 

  • Ugent D (1970) The potato: what is the origin of this important crop plant, and how did it first become domesticated? Science 170:1161–1166

    CAS  PubMed  Google Scholar 

  • Uijtewaal BA, Jacobsen E, Hermsen JGT (1987) Morphology and vigour of monohaploid potato clones, their corresponding homozygous diploids and tetraploids and their heterozygous diploid parent. Euphytica 36:745–753

    Google Scholar 

  • Veilleux R (1990) Solanum phureja: anther culture and the induction of haploids in a cultivated diploid potato species. In: Bajaj Y (ed) Biotechnology in agriculture and forestry 12: haploids in crop improvement I. Springer, New York, pp 530–543

    Google Scholar 

  • Vos PG, Uitdewilligen J, Voorrips RE, Visser RGF, van Eck HJ (2015) Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet 128:2387–2401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S et al (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476

    CAS  PubMed  Google Scholar 

  • Watanabe K, Orrillo M, Perez S, Crusado J (1996) Testing yield of diploid potato breeding lines for cultivar development. Breed Sci 46:245–249

    Google Scholar 

  • Watson A, Ghosh S et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29. https://doi.org/10.1038/s41477-017-0083-8

    Article  PubMed  Google Scholar 

  • Witek K, Strzelczyk-Żyta D, Hennig J, Marczewski W (2006) A multiplex PCR approach to simultaneously genotype potato towards the resistance alleles Ry-f sto and ns. Mol Breed 18(3):273–275

    CAS  Google Scholar 

  • Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants 4(9):651–654

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sood, S., Bhardwaj, V., Sundaresha, S. (2020). Major Paradigm Shifts in Potato Breeding. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_1

Download citation

Publish with us

Policies and ethics