Skip to main content

History of Vacuum Electronics and Vacuum Electron Sources and Future Development Trends

  • Chapter
  • First Online:
Modern Developments in Vacuum Electron Sources

Part of the book series: Topics in Applied Physics ((TAP,volume 135))

Abstract

The historical rise of vacuum electronics (VE) was enabled by the availability of electrical power and by improved vacuum techniques, but its further progress relied on improved electron sources and their control. The development of VE has been pushed by several technological waves/cycles, starting with incandescent lamps, continuing with the radio tube era and then followed by the cathode-ray tubes. Yet vacuum electronics is still alive and has specific advantages in the high-power, high-frequency domain. The improvement trends of cathodes over time, related to specific and also advanced application requirements will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gaertner, H.W.P. Koops, Vacuum electron sources and their materials and technologies, in Chapter 10 of Vacuum Electronics, Components and Devices, ed. by J. Eichmeier, M. Thumm (Springer, 2008)

    Google Scholar 

  2. G. Gaertner, Historical development and future trends of vacuum electronics. J. Vac. Sci. Technol. B 30(6), 060801 (2012)

    Article  Google Scholar 

  3. P. Dunsheath, A History of Electrical Power Engineering (MIT Press, Cambridge, 1962)

    Google Scholar 

  4. Wolfram Fischer (Ed.), “Die Geschichte der Stromversorgung”, Verlags- u. Wirtschaftsgesellschaft der Elektrizitätswerke m.b.H., Frankfurt a. Main, 1992

    Google Scholar 

  5. F.R. Paturi, Chronik der Technik (Chronik Verlag, Dortmund, 1988)

    Google Scholar 

  6. I. Buchmann, Batteries in a Portable World, Cadex Electronics 2011. http://www.mlelectronics.be/doc_downloads/producten/batterijen/basisinfo/BatteryKnowledgePart1.pdf

  7. The Electrical Experimenter, Sept 1915, p. 198. https://www.americanradiohistory.com/Archive-Electrical-Experimenter/EE-1915–09.pdf

  8. C. Schott, O. von Guericke, Ottonis de Guericke Experimenta Nova Magdeburgica de Vacuo Spatio (Amsterdam, 1672)

    Google Scholar 

  9. W. Conrad (ed.), Geschichte der Technik in Schlaglichtern (Meyers Lexikonverlag, Mannheim, 1997)

    Google Scholar 

  10. M. Schneider, Elektrisiermaschinen im 18. und 19. Jahrhundert, Ein kleines Lexikon (Universität Regensburg, 2003/2004)

    Google Scholar 

  11. W.E. Ayrton, Practical Electricity; Laboratory and Lecture Course (Cassell & Company Ltd., London, Paris & Melbourne, 1891)

    Google Scholar 

  12. H.W. Meyer, A History Of Electricity And Magnetism (MIT Press Design Department, 1971 and Burndy Library, Norwalk, Connecticut, 1972)

    Google Scholar 

  13. Roobert33, 2015. https://www.youtube.com/watch?v=c_0N-0lfxpE

  14. B. Garg, Introduction to Flow Batteries: Theory and Applications, coursework for PH240 (Stanford University, Fall, 2011)

    Google Scholar 

  15. T. Nguyen, R. F. Savinell, Flow batteries. Interface 19(3), 54 (2010)

    Google Scholar 

  16. L. Figuier, Les Merveilles de la Science, Furne, Jouvet et Cie., Paris 1867, see Chapter “La pile de Volta”, pp. 598–706

    Google Scholar 

  17. P. Unwin, R. Unwin, ‘A devotion to the experimental sciences and arts’: the subscription to the great battery at the Royal Institution 1808–91. Br. Soc. Hist. Sci. BJHS 40(2), 181–203 (2007)

    Google Scholar 

  18. A. Anders, Tracking down the origin of Arc plasma science-II. Early continuous discharges. IEEE Trans. Plasma Sci. 31, 1060–1069 (2003)

    Article  ADS  Google Scholar 

  19. W. James King, The Development of Electrical Technology in the 19th Century: l. The Electro-chemical Cell and the Electromagnet. BULLETIN 228: Contributions from the Museum of History and Technology (1962), pp. 231–418

    Google Scholar 

  20. V. Leiste, Siemens History Site-Im Fokus-Dynamoelektrisches Prinzip. https://www.siemens.com/history/de/aktuelles/1056_dynamoelektrisch

  21. Siemens Historical Institute (ed.), Age of Electricity (Deutscher Kunstverlag, 2014)

    Google Scholar 

  22. http://www.power-technology.com/features/feature-largest-nuclear-power-plants-world/

  23. S. David, E. Huffer, H. Nifenecker, High efficiency nuclear power plants using liquid fluoride thorium reactor technology. Europhys. News 38, 24–27 (2007). https://doi.org/10.1051/EPN:2007007

    Article  Google Scholar 

  24. Russian fast reactor reaches full power, 17 August 2016. http://www.world-nuclear-news.org/Articles/Russian-fast-reactor-reaches-full-power

  25. M. Claessens, ITER: The Giant Fusion Reactor, Springer 2020

    Google Scholar 

  26. https://new.siemens.com/global/en/company/about/history/technology/power-generation-and-distribution/conventional-power-plants.html

  27. https://en.wikipedia.org/wiki/List_of_largest_power_stations

  28. https://www.energie-lexikon.info/windenergieanlage.html. RP Energie-Lexikon, Rüdiger Paschotta (2017)

  29. http://www.ingenieur.de/Fachbereiche/Windenergie/Groesstes-Windrad-Welt-Herz-Nieren-getestet

  30. Wind turbine, Wikipedia 2019. https://en.wikipedia.org/wiki/Wind_turbine

  31. J. Peinke, D. Heinemann, M. Kühn, Windenergie, eine turbulente Sache? Physik J. 13(7), 35f (2014)

    Google Scholar 

  32. https://de.wikipedia.org/wiki/Photovoltaik-Freiflächenanlage

  33. http://www.ageu-die-realisten.com/archives/1473. Der Flächenbedarf von Stromerzeugungsanlagen, Günther Keil (2015)

  34. A. Bachem, C. Buchal, Energiewende-quo vadis? Physik J. 12(12), 33–39 (2013)

    Google Scholar 

  35. M. Bettzüge, Nationaler Hochmut oder cui bono? Physik J. 13(5), 33–38 (2014)

    Google Scholar 

  36. https://de.wikipedia.org/wiki/Kernkraftwerk_Biblis

  37. P. Denholm, M. Hand, M. Jackson, S. Ong, Land-Use Requirements of Modern Wind Power Plants in the United States. Technical Report NREL/TP-6A2-4 5834 August 2009, US Department of Energy, National Renewable Energy Laboratory

    Google Scholar 

  38. K. Wey, R.J. Peters, Geschichte der Vakuumtechnik. Vak. Forsch. Prax. 14, 183 (2002)

    Article  Google Scholar 

  39. N. Marquardt, Introduction to the Principles of Vacuum Physics (CERN Accelerator School: Vacuum Technology, 1999). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/32/011/32011645.pdf

  40. P.A. Redhead, History of Vacuum Devices (CERN Accelerator School: Vacuum Technology, 1999), pp. 281–290. http://cdsweb.cern.ch/record/455984/files/p281.pdf

  41. W. Knapp, Vacuum technology, in Chapter 11 of Vacuum Electronics, Components and Devices, ed. J. Eichmeier, M. Thumm (Springer, 2008)

    Google Scholar 

  42. P.A. Redhead, The ultimate vacuum. Vacuum 53, 137–149 (1999)

    Article  ADS  Google Scholar 

  43. A. Calcatelli, The development of vacuum measurements down to extremely high vacuum –XHV, in Proceedings of 3rd IMEKO TC16 International Conference on Pressure Measurement, Merida 2007 (Curran Associates 2009), p. 219. http://www.imeko.org/publications/tc16-2007/IMEKO-TC16-2007-KL-034u.pdf

  44. P.A. Redhead, Vacuum science and technology: 1950–2003. J. Vac. Sci. Technol. A 21, S12–S14 (2003)

    Article  ADS  Google Scholar 

  45. W. Becker (Pfeiffer Vakuumtechnik), Turbo-molecular pump, US Patent 3477381A, published 11 Nov 1969, priority 30 Dec 1966

    Google Scholar 

  46. L.D. Hall, Ionic vacuum pumps. Science 128, 3319 (1958)

    Google Scholar 

  47. J.P. Hobson, Measurements with a modulated Bayard-Alpert gauge in aluminosilicate glass at pressures below 10–12 Torr. J. Vac. Sci. Technol. 1, 1 (1964)

    Article  ADS  Google Scholar 

  48. P.A. Redhead, Extreme High Vacuum (CERN Accelerator school: Vacuum technology, 1999), pp. 213–226

    Google Scholar 

  49. H. Ishimaru et al., Ultimate pressure of the order of 10−13 Torr in an aluminum alloy vacuum chamber. J. Vac. Sci. Technol. B 7, 2439–2442 (1989)

    Article  ADS  Google Scholar 

  50. G. Gabrielse, H. Kalinowsky et al., Thousandfold improvement in the measured Antiproton Mass. Phys. Rev. Lett. 65, 1317–1320 (1990)

    Article  ADS  Google Scholar 

  51. P. Micke, M. Schwarz et al., Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications. Rev. Sci. Instr. 90, 065104 (2019)

    Article  ADS  Google Scholar 

  52. M. Schwarz et al., Cryogenic linear Paul trap for cold highly charged ion experiments. Rev. Sci. Instr. 83, 083115 (2012)

    Article  ADS  Google Scholar 

  53. C. Benvenuti, Extreme high vacuum technology for particle accelerators, in Proceedings of the 2001 Particle Accelerator Conference (IEEE), Chicago (2001), pp. 602–606

    Google Scholar 

  54. P.A. Redhead, Vacuum and the electron tube industry. J. Vac. Sci. Technol. A 23, 1252 (2005)

    Article  ADS  Google Scholar 

  55. O. Darrigol (CNRS), Electrodynamics from Ampere to Einstein (Oxford University Press, Oxford, 2000)

    Google Scholar 

  56. P.A. Redhead, Birth of electronics: thermionic emission and vacuum. J. Vac. Sci. Technol. A 16, 1394 (1998)

    Article  ADS  Google Scholar 

  57. S. Okamura, History of Electron Tubes (Ohmsha, Tokyo, 1994 and IOS Press, 1994)

    Google Scholar 

  58. G. Bekooy, Philips Honderd–en industriele onderneming (Europese Bibliothek, Zaltbommel, 1991)

    Google Scholar 

  59. D. van Delft, A. Maas, Philips Research–100 years of Inventions that Matter (WBooks, Zwolle, 2013)

    Google Scholar 

  60. F. Rosebury, Handbook of Electron Tube and Vacuum Techniques (American Institute of Physics, 1993, originally MIT, 1964)

    Google Scholar 

  61. H.G. Boumeester, Development and manufacture of modern transmitting valves. Philips Tech. Rev. 2(4), 115–121 (1937)

    Google Scholar 

  62. G.E.J. Tyne, Saga of the Vacuum Tube (Indianapolis, 1987)

    Google Scholar 

  63. J.W. Stokes, 70 Years of Radio Valves and Tubes (New York, 1982)

    Google Scholar 

  64. W.H. Kohl, Materials and techniques for vacuum devices (Reinhold Publishing Corp., New York, 1967)

    Google Scholar 

  65. G. Gaertner, D. den Engelsen, Appl. Surf. Sci. 251, 24–30 (2005)

    Article  ADS  Google Scholar 

  66. J.A. Castellano, in Digest of Society for Information Display (SID) Symposium 1999 (SID, San Jose, 1999), p. 356

    Google Scholar 

  67. P. Combes, Display Components, Philips ppt-presentation (2000). See https://www.yumpu.com/en/document/view/217010/philippe-combes

  68. J. Kitzmiller, Industry and Trade Summary-Television Picture Tubes and other Cathode Ray Tubes. USITC Publication 2877, May 1995

    Google Scholar 

  69. N. Stam, CRT Innovations, PCMAG.COM, 31.3.2003, based on isuppli/Stanford resources + internal information from LPD 2002

    Google Scholar 

  70. M. Kenney, R. Florida (eds.) Locating Global Advantage. Industry Dynamics in the International Economy. Stanford 2004. Chapter 4: M. Kenney, The shifting value chain. The Television Industry in North America, p. 182

    Google Scholar 

  71. European Commission, Case AT.39437, TV and computer monitor tubes. Cartel procedure, 5 Dec 2012

    Google Scholar 

  72. R.J. Barker, J.H. Booske, N.C. Luhmann, G.S. Nusinovic (eds.) Modern Microwave and Millimeter-Wave Power Electronics (Wiley-IEEE, New York, 2005)

    Google Scholar 

  73. J.H. Booske, Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation. Phys. Plasmas 15, 055502 (2008)

    Article  ADS  Google Scholar 

  74. H. Verhaar (Philips Lighting) Global Incandescent Phase-out; Meeting the Demand. Presentation 12 May 2008, Shanghai. http://www.energyrating.gov.au/document/presentation-global-incandescent-phase-out-meeting-demand

  75. J. Stettler, A. Leslie, A. Bell (new street Research) The Future of Lighting: Who Will Win?. Industry analysis, 5 May 2010. www.newstreetresearch.com, http://www.sdr.si/pdf/the%20future%20of%20lighting%20100305.pdf

  76. P. Waide, Phase Out of Incandescent Lamps. International Energy Agency, Information paper, April 2010, https://www.oecd-ilibrary.org/docserver

  77. G. Zissis, P. Bertoldi, 2014 Update on the Status of LED Market (European Commission, Joint Research Centre, JRC Technical Report, Ispra, Italy, 2014)

    Google Scholar 

  78. G. Zissis, P. Bertoldi, Status of LED-Lighting World Market in 2017. European Commission, JRC Technical Reports, Ispra (2018)

    Google Scholar 

  79. G.A. Haas, Thermionic electron sources, in Methods of Experimental Physics, vol. 4, part A (Academic Press, New York, 1967)

    Google Scholar 

  80. R.O. Jenkins, A review on thermionic cathodes. Vacuum 19(8), 353 (1969)

    Article  ADS  Google Scholar 

  81. R. Thomas, J. Gibson, G.A. Haas, R. Abrams, Thermionic sources for high brightness electron beams. IEEE Trans. ED 37, 850–861 (1990)

    Article  ADS  Google Scholar 

  82. P.W. Hawkes, Thermionic emission. Encycl. Appl. Phys. 21, 229–243 (1997)

    Google Scholar 

  83. R.R. Umstattd, Advanced electron beam sources. Chapter 8 in Modern Microwave and Millimeter-Wave Power Electronics, ed. by R. Barker et al. (Wiley, 2005), pp. 393–444

    Google Scholar 

  84. S. Yamamoto, Fundamental physics of vacuum electron sources. Rep. Prog. Phys. 69, 181–232 (2006)

    Article  ADS  Google Scholar 

  85. H. Lemmens, P. Zalm, New developments in oxide-coated cathodes-oxide-coated cathodes for loads of 1 to 2 A/cm2. Philips Techn. Rev. 23, 21–24 (1961/62)

    Google Scholar 

  86. T. Aida, H. Tanuma, S. Sasaki et al., Emission life and surface analysis of barium-impregnated thermionic cathodes. J. Appl. Phys. 74, 6482–6487 (1993)

    Article  ADS  Google Scholar 

  87. W. Liang, Y. Wang, J. Wang, W. Liu, F. Yang, DC emission characteristic of nanosized-scandia-doped impregnated dispenser cathodes. IEEE Trans. ED 61/6, 1749 (2014) and Y. Wang, Scandate cathode–what we have learned and what we expect to know, in Proceedings of the IVESC 2016, Seoul, p. 3

    Google Scholar 

  88. B. Djubua, O. Kultashev, A. Makarov, O. Polivnikova, E. Zemchikhin, Metal alloy cathodes for application in vacuum microwave devices, in Proceedings of the IVEC/IVESC 2012, Monterey, CA, paper 125

    Google Scholar 

  89. G. Gaertner, P. Geittner, H. Lydtin, A. Ritz, Emission properties of top-layer scandate cathodes prepared by LAD. Appl. Surf. Sci. 111, 11–17 (1997)

    Article  ADS  Google Scholar 

  90. J. Wang, W. Liu, Y. Wang, M. Zhou, in Abstract Book of 2008 International Vacuum Electron Sources Conference (IVESC), London (2008), p. 10

    Google Scholar 

  91. Y. Wang, J. Wang, W. Liu, J. Li, in Abstract Book of 2008 International Vacuum Electron Sources Conference (IVESC), London (2008), p. 16

    Google Scholar 

  92. J.R. Meijer et al. (MAPPER Lithography B.V.), Electron sources for MAPPER maskless lithography, in Proceedings of IVESC-ICEE-2014, Saint-Petersburg, Russia (2014)

    Google Scholar 

  93. D.H. Dowell, J. Smedley, et al., Cathode R&D for future light sources. SLAC-Pub-14002 and Nucl. Instrum. Methods Phys. Res. A 622, 685 (2010)

    Google Scholar 

  94. I. Brodie, C. Spindt, Vacuum microelectronics, in Advances in Electronics and Electron Physics, vol. 83, ed. by P. Hawkes (Academic Press, New York, 1992), p. 1

    Google Scholar 

  95. W. Zhu (ed.), Vacuum Microelectronics (Wiley, 2001)

    Google Scholar 

  96. N. Egorov, E.P. Sheshin, Electron Field Emission, Principles and Applications (In Russian) (Intellekt, 2011); Updated English version Field Emission Electronics (Springer, 2017)

    Google Scholar 

  97. V.V. Zhirnov, C. Lizzul-Rinne, G.J. Wojak, R.C. Sanwald, J.J. Hren, “Standardization” of field emission measurements. J. Vac. Sci. Technol. B 19, 87 (2001)

    Article  Google Scholar 

  98. F. Charbonnier, Developing and using the field emitter as a high intensity electron source. Appl. Surf. Sci. 94(95), 26–43 (1996)

    Article  ADS  Google Scholar 

  99. D. Wenger, W. Knapp, B. Hensel, S.F. Tedde, Transition of electron field emission to normal glow discharge. IEEE Trans. Electron Devices 61(11), 3864–3870 (2014)

    Article  ADS  Google Scholar 

  100. G. van Gorkom, A. Hoeberechts, “Back-biased junction cold cathodes: history and state of the art”, in Vacuum Electronics 89, IOP Conf. Series 99, 41–52 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Gaertner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaertner, G. (2020). History of Vacuum Electronics and Vacuum Electron Sources and Future Development Trends. In: Gaertner, G., Knapp, W., Forbes, R.G. (eds) Modern Developments in Vacuum Electron Sources. Topics in Applied Physics, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-030-47291-7_1

Download citation

Publish with us

Policies and ethics