Skip to main content

Extreme Morphological Plasticity Within Orbulina-“Praeorbulina-Like” Assemblages Related to Environmental Stress

  • 277 Accesses

Abstract

Planktic foraminifera, unicellular microzooplankton with a calcitic shell, have produced an exceptional fossil record, revealing an invaluable archive of biodiversity, morphological and evolutionary changes.

The evolutionary lineage starting from Trilobatus Spezzaferri 2015 (= “Globigerinoides”) culminating in Orbulina universa d’Orbigny 1839 is a fascinating example of peramorphic spherisation lineage (increasing involution, coupled with increasing shell curvature).

This chapter focuses on the extreme morphological variability observed in the Orbulina group in some horizons from Chélif Basin in Algeria, just preceding the well-known Messinian (Late Miocene) salinity crisis in the Mediterranean basin. Surprisingly, in such horizons, spherical Orbulina universa lineage end-member specimens coexist with ancestor-like morphotypes, such as Orbulina suturalis Brönnimann 1951 and the supposed extinct Praeorbulina Olsson 1964, as well as with malformed specimens. Many authors considered in fact that Praeorbulina last occurred within the Langhian stage in the Middle Miocene.

A similar recovery of individuals which show an intergradation between a typical Orbulina morphology and morphologies close to the ancestors Orbulina suturalis and Praeorbulina was also reported in Last Glacial Maximum sediments from the northern Arabian Sea. In this Late Pleistocene case, AMS 14C data showed clearly unreworked character of this “Praeorbulina-like” populations.

We discuss the possible link between this extreme morphological plasticity of Orbulina group in specific time horizons and possible stress conditions of the water column.

Keywords

  • Planktic foraminifera
  • Morphological plasticity
  • Reverse evolution
  • Environmental stress

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-47279-5_7
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-47279-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Plate 7.1
Plate 7.2

References

  • André A, Quillévéré F, Morard R, Ujiié Y, Escarguel G, de Vargas C, de Garidel-Thoron T, Douady CJ (2014) SSU rDNA divergence in planktonic foraminifera: molecular taxonomy and biogeographic implications. PLoS One 9(8):e104641. https://doi.org/10.1371/journal.pone.0104641

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Berggren WA, Kent DV, Swisher CC, Aubry M-P (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, et al. (eds) Geochronology, time scales and global stratigraphic correlation. Lamont-Doherty Earth Observatory Biology and Paleo Environment, Society of Sedimentary Geology (SEPM), Special Publication, 54:129–212

    Google Scholar 

  • Blow WH (1956) Origin and evolution of the foraminiferal genus Orbulina d’Orbigny. Micropaleontology 2:57–70

    Google Scholar 

  • Blow WH (1969) Late middle Eocene to recent planktonic foraminiferal biostratigraphy. Bull Am Paleontol 39:59–271

    Google Scholar 

  • Bolli HM, Saunders JB (1985) Oligocene to Holocene low latitude planktonic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 155–262

    Google Scholar 

  • Boudagher-Fadel MK (2015) Biostratigraphic and geological significance of planktonic foraminifera. UCL Press, London, 306 pp

    Google Scholar 

  • Brönnimann P (1951) The genus Orbulina d’Orbigny in the Oligo-Miocene of Trinidad. B W I Contributions from the Cushman Foundation for Foraminiferal Research 2(4):135

    Google Scholar 

  • Cabej N (2012) Epigenetic principles of evolution. Elsevier Insights, London, p 804

    Google Scholar 

  • Cohen KM, Gibbard PL (2016) Global chronostratigraphical correlation table for the last 2.7 million years, v. 2016a. International Commission on Stratigraphy, IUGS. www.stratigraphy.org

  • Cushman JA, Dorsey AL (1940) Some notes on the genus Candorbulina. Contrib Cushman Lab Foramin Res 16:40–42

    Google Scholar 

  • De Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J (1999) Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci U S A 96:2864–2868

    PubMed  PubMed Central  Google Scholar 

  • De Stefani T (1952) Su alcune manifestazioni di idrocarburi in provincia di Palermo e descrizione di foraminiferi nuovi. Plinia 3(4):1–13

    Google Scholar 

  • Garcia-Castellanos D, Villasenor A (2011) Messinian salinity crisis regulated by competing tectonics and erosion at Gibraltar arc. Nature 480:359–363

    CAS  PubMed  Google Scholar 

  • Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclogae Geol Helv 94:321–328

    Google Scholar 

  • Guex J (2006) Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth Planet Sci Lett 424:240–253

    Google Scholar 

  • Guex J (2016) Retrograde evolution during major extinction crises. SpringerBriefs in Evolutionary Biology, Heidelberg, 75 p

    Google Scholar 

  • Guex J, O’Dogherty L, Carter ES, Gorican S, Dumitrica P, Bartolini A (2012) Geometrical transformations of selected Mesozoic radiolarians. Geobios 45:541–554

    Google Scholar 

  • Guex J, Caridroit M, Kuwahara K, O’Dogherty L (2014) Retrograde evolution of Albaillella during the Permian-Triassic crisis. Rev Micropaleontol 57(2):39–43

    Google Scholar 

  • Hemleben C, Splinder M, Anderson OR (1989) Modern planktonic foraminifera. Springer-Verlag, New York, 363 p

    Google Scholar 

  • Hsü KJ, Ryan WBF, Cita MB (1973) Late Miocene desiccation of the Mediterranean. Nature 242:240–244

    Google Scholar 

  • Iaccarino S (1985) Mediterranean Miocene and Pliocene planktonic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 283–314

    Google Scholar 

  • Jenkins DG, Saunders JB, Cifelli R (1981) The relationship of Globigerinoides bisphericus Todd 1954 to Praeorbulina sicana (De Stefani) 1952. J Foraminiferal Res 11:262–267

    Google Scholar 

  • Kennett JP, Srinivasan MS (1983) Neogene planktonic foraminifera, A phylogenetic atlas. Hutchinson Ross, Stroudsburg, PA, 265 p

    Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    CAS  Google Scholar 

  • Kucera M (2007) Planktonic foraminifera as tracers of past oceanic environments. In: Hillaire-Marcel C, de Vernal A (eds) Proxies in late Cenozoic paleoceanography. Elsevier, Amsterdam, pp 213–254

    Google Scholar 

  • Lourens LJ, Hilgen FJ, Shackleton NJ, Laskar J, Wilson D (2004) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) Geological time scale 2004. Cambridge University Press, Cambridge, pp 409–440

    Google Scholar 

  • Mancin N, Darling K (2015) Morphological abnormalities of planktonic foraminiferal tests in the SW Pacific Ocean over the last 550ky. Mar Micropaleontol 120:1–19. https://doi.org/10.1016/j.marmicro.2015.08.003

    CrossRef  Google Scholar 

  • Manzi V, Gennari R, Hilgen F, Krijgsman W, Lugli S, Roveri M, Sierro FJ (2013) Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25:315–322

    Google Scholar 

  • Manzi V, Gennari R, Lugli S, Persico D, Reghizzi M, Roveri M, Schreiber BC, Calvo R, Gavrieli I, Gvirtzman Z (2018) The onset of the Messinian salinity crisis in the deep Eastern Mediterranean basin. Terra Nova 30:189–198

    Google Scholar 

  • Morard R, Quillévéré F, Escarguel G, Ujiie Y, de Garidel-Thoron T, Norris RD, de Vargas C (2009) Morphological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Mar Micropaleontol 71:148–165

    Google Scholar 

  • Olsson RK (1964) Praeorbulina Olsson, a new foraminiferal genus. J Paleo 38:770–771

    Google Scholar 

  • Pearson PN, Shackleton NJ, Hall MA (1997) Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera). J Geol Soc London 154:295–302

    CAS  Google Scholar 

  • Perrodon A (1957) Etude géologique des bassins néogènes sub-littoraux de l’Algérie occidentale. Publ Serv Carte Géol Algérie n s Alger Bull 12:382

    Google Scholar 

  • Postuma JA (1971) Manual of planktonic foraminifera. Elsevier for Shell Group, The Hague, pp 1–406

    Google Scholar 

  • Reichart GJ, Lourens LJ, Zachariasse WJ (1998) Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225,000 years. Paleoceanography 13:607–621

    Google Scholar 

  • Rossignol L, Eynaud F, Bourget J, Zaragosi S, Fontanier C, Nadine E-Z, Lanfumey V (2011) High occurrence of Orbulina suturalis and “Praeorbulina-like specimens” in sediments of the northern Arabian Sea during the Last Glacial Maximum. Mar Micropaleontol 79:100–113

    Google Scholar 

  • Rouchy JM, Caruso A (2006) The Messinian salinity crisis in the Mediterranean Basin: a reassessment of the data and an integrated scenario. Sediment Geol 188(/189):35–67

    Google Scholar 

  • Rouchy JM, Caruso A, Pierre C, Blanc-Valleron M-M, Bassetti MA (2007) The end of the Messinian salinity crisis: evidences from the Chelif Basin (Algeria). Palaeogeogr Palaeoclimatol Palaeoecol 254:386–417

    Google Scholar 

  • Ruggieri G, Adams CJ, Ager DV (1967) The Miocene and latter evolution of the Mediterranean Sea. Aspects of Tethyan Biogeography. Systematic Association Publication, London, England, p 283

    Google Scholar 

  • Reuss AE (1850) Neue Foraminiferen aus den Schichten des österreichischen Tertiärbeckens. Denkschriften der Kaiserlichen Akademie der Wissenschaften 1:365–390

    Google Scholar 

  • Schiebel R, Hemleben C (2017) Planktic foraminifers in the modern ocean. Springer-Verlag, Berlin Heidelberg, p 358

    Google Scholar 

  • Sierro FJ, Hilgen FJ, Krijgsman W, Flores JA (2001) The Abad composite (SE Spain): a Messinian reference section for the Mediterranean and the ATPS. Palaeogeogr Palaeoclimatol Palaeoecol 168:141–169

    Google Scholar 

  • Simon D, Marzocchi A, Flecker R, Lunt DJ, Hilgen FJ, Meijer PT (2017) Quantifying the Mediterranean freshwater budget throughout the late Miocene: new implications for sapropel formation and the Messinian salinity crisis. Earth Planet Sci Lett 472:25–37

    CAS  Google Scholar 

  • Spero HJ (1988) Ultrastructural examination of chamber morphogenesis and biomineralization in the planktonic foraminifer Orbulina universa. Mar Biol 99:9–20

    Google Scholar 

  • Spezzaferri S, Kucera M, Pearson PN, Wade BS, Rappo S, Poole CR, Morard R, Stalder C (2015) Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera “Globigerinoides”, and description of the new genus Trilobatus. PLoS One 10(5):e0128108. https://doi.org/10.1371/journal.pone.0128108

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Schmiedl G, Leuschner DC (2005) Oxygenation changes in the deep western Arabian Sea during the last 190,000 years: Productivity versus deepwater circulation. Paleoceanography 20(2):PA2008. https://doi.org/10.1029/2004PA001044

  • Tauecchio P, Marks P (1973) The Messinian deposits of the Chelif Basin near E1 Asnam, Northern Algeria. In: Drooger CW (ed) Messinian events in the Mediterranean. North-Holland, Amsterdam, pp 188–191

    Google Scholar 

  • Turco E, Iaccarino SM, Foresi LM, Salvatorini G, Riforgiato F, Verducci M (2011) Revisiting the taxonomy of the intermediate stages in the Globigerinoides-Praeorbulina lineage. Stratigraphy 8(2-3):163–187

    Google Scholar 

  • Todd R (1954) Probable occurrence of Oligocene on Saipan. Am J Sci 252 (11):673–682

    Google Scholar 

  • Vénec-Peyré MT (1981) Les Foraminifères et la pollution: étude de la microfaune de la Cale du Dourduff (Embouchure de la Rivière de Morlaix). Cahiers de Biologie Marine 22:25–33

    Google Scholar 

  • Vénec-Peyré M-T, Bartolini A, Weber M, Lipps JH (2020) Morphological deformation of foraminiferal tests caused by intertidal oil spills (black tides). In: Guex J et al. (eds): Morphogenesis, Environmental Stress and Reverse Evolution. Springer Nature Switzerland AG 978-3-030-47278-8

    Google Scholar 

  • Wade BS, Pearson PN, Berggren WA, Pälike H (2011) Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci Rev 104:111–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annachiara Bartolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Belhadji, A., Bartolini, A., Rossignol, L., Belkebir, L., Guex, J. (2020). Extreme Morphological Plasticity Within Orbulina-“Praeorbulina-Like” Assemblages Related to Environmental Stress. In: Guex, J., S. Torday, J., Miller Jr., W. (eds) Morphogenesis, Environmental Stress and Reverse Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-47279-5_7

Download citation