Skip to main content

Fossil Benthic Foraminifera Morphologic Adaptation (Kleptoplastidy) Within Low-Oxygen-Bottom Water Environments, Coupled with Geochemical Insights from the Late Cretaceous in the Levant Basin

  • Chapter
  • First Online:
Morphogenesis, Environmental Stress and Reverse Evolution

Abstract

Following a multi-proxy analysis of the Upper Cretaceous high-productivity sequence from proximal and distal basins in Israel, Meilijson et al. (Paleobiology 42:77–97, 2016) provided evidence indicating that different benthic foraminifera species could survive and sustain large populations under long-term anoxic to dysoxic bottom water conditions. They proposed that massive blooms of triserial (buliminid) benthic foraminifera with distinct apertural and test morphologies during the Campanian managed to survive anoxic conditions by their capability to sequester diatom chloroplasts (kleptoplastidy) and associate with bacteria, in a similar manner as their modern analogues. This advantageous capability as well as other adaptations such as using nitrate instead of oxygen for their respiratory pathways, or changes in food type arriving to the seafloor, were all affected by the substantial shift in the depositional environment following the Campanian/Maastrichtian boundary. However, several of the hypothesis and assumptions presented in this chapter called for a continued study of the Upper Cretaceous deposits in the Levant, to better constrain the oceanographic and bottom water process in which these organisms lived.

Here we report on a high-resolution investigation focused on the inorganic geochemical properties of two sections within the high-productivity setting of the Late Cretaceous in the Levant. Benthic foraminiferal assemblages were compared with the trace metal enrichment, bottom water renewal and water column oxygen levels, on a high-productivity seafloor. Our work focused on the occurrence and distribution of redox-sensitive/sulphide-forming trace metals obtained by analytical approaches (bulk sediment composition, ED- and WD-XRF), in the organic-rich sediments. On basis of the bulk sediment geochemistry, a principal component analysis distinguished between two factors for both sections: Factor 1 mirrors the degree of bottom-water oxygenation (Cu, S, Ni, Zn, Cr and Corg) and includes elements representing enhanced phosphorite deposition (P2O5, U, As, Mo, Y). Factor 2 reflects the interplay between the input of biogenic carbonate (Ca) and terrigenous material (TiO2, Rb, SiO2, Fe2O3(t), Ce, Ga, V and Al2O3). An additional factor was used in the distal and deeper of the two sections to distinguish between times in which dominance of siliceous or calcareous biogenic sedimentation occurred. We observe that the lowest part of the Maastrichtian contained the strongest reducing conditions, whereas the upper part was affected by a lesser degree of oxygen deficiency. Geochemical results of the molybdenum-to-organic carbon ratio reveal a change in the water mass circulation to more restrictive condition within the lower Maastrichtian, which coincides with reported sea-level rise. Based on factor analysis of the elemental distribution we demonstrate a clear connection between diatom abundance and peaks in the abundance of foraminifera species thought to have used kleptoplastidy as a morphological adaptation to cope with environmental instability, advocating previous assumptions and hypothesis. Additionally, it is evident that along the section in which fluctuations in the relative abundance of primary producers occurred, substantial shifts also transpired in the relative contribution of terrigenic material to the accumulating sediments. The synchronous occurrence of abnormally high numbers of low-diversity benthic foraminifera demonstrates the existence and success of functional adaptations. Our identification of morphological adaptations in Praebulimina prolixa, which are identical to those recognized in modern diatom-based kleptoplastidy of benthic foraminifera, acts as the missing link for understanding this complex system. It does so by tying between productivity, oceanography, continental-marine interactions and remarkable biochemical reciprocity and adaptiveness of present and deep-time ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed AM, Sadaqah RM (2013) Enrichment of uranium in the uppermost Al-Hisa phosphorite formation, Eshidiyya basin, southern Jordan. J Afr Earth Sci 77:31–40. https://doi.org/10.1016/j.jafrearsci.2012.09.009

    Article  CAS  Google Scholar 

  • Algeo TJ, Lyons TW (2006) Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography. https://doi.org/10.1029/2004PA001112

  • Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol. https://doi.org/10.1016/j.chemgeo.2003.12.009

  • Algeo TJ, Rowe H (2012) Paleoceanographic applications of trace-metal concentration data. Chem Geol. https://doi.org/10.1016/j.chemgeo.2011.09.002

  • Almogi-Labin A, Bein A, Sass E (1993) Late Cretaceous upwelling system along the Southern Tethys Margin (Israel): interrelationship between productivity, bottom water environments, and organic matter preservation. Paleoceanography 8:671–690. https://doi.org/10.1029/93PA02197

    Article  Google Scholar 

  • Almogi-Labin A, Ashckenazi-Polivoda S, Edelman-Furstenberg Y, Benjamini C (2012) Anoxia-dysoxia at the sediment-water interface of the Southern Tethys in the Late Cretaceous: Mishash Formation, Southern Israel. In: Altenbach A, Bernhard JM, Seckbach J (eds) Anoxia: evidence for eukaryote survival and paleontological strategies. Springer, Dordrecht, pp 553–572. https://doi.org/10.1007/978-94-007-1896-8_29

  • Alsenz H, Illner P, Ashckenazi-Polivoda S, Meilijson A, Abramovich S, Feinstein S, Almogi-Labin A, Berner Z, Püttmann W (2015) Geochemical evidence for the link between sulfate reduction, sulfide oxidation and phosphate accumulation in a late cretaceous upwelling system. Geochem Trans 16:2. https://doi.org/10.1186/s12932-015-0017-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altenbach AVA, Bernhard JMJ, Seckbach J (2011) Anoxia: evidence for eukaryote survival and paleontological strategies. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Cellular origin, life in extreme habitats and astrobiology. Vol. 21, Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, p 480. https://doi.org/10.1007/978-94-007-1896-8

  • Arias YM, Tebo BM (2003) Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia. Appl Environ Microbiol. https://doi.org/10.1128/AEM.69.3.1847-1853.2003

  • Ashckenazi-Polivoda S (2011) The Late Cretaceous Southern Tethyan upwelling system: a case study from the high productivity sequence, Negev, Israel

    Google Scholar 

  • Ashckenazi-Polivoda S, Abramovich S, Almogi-Labin A, Schneider-Mor A, Feinstein S, Puttmann W, Berner Z (2011) Paleoenvironments of the latest Cretaceous oil shale sequence, Southern Tethys, Israel, as an integral part of the prevailing upwelling system. Palaeogeogr Palaeoclimatol Palaeoecol 305:93–108. https://doi.org/10.1016/j.palaeo.2011.02.018

    Article  Google Scholar 

  • Ashckenazi-Polivoda S, Titelboim D, Meilijson A, Almogi-Labin A, Abramovich S (2018) Bathymetric trend of Late Cretaceous southern Tethys upwelling regime based on benthic foraminifera. Cretac Res 82:40–55. https://doi.org/10.1016/j.cretres.2017.10.014

    Article  Google Scholar 

  • Austin HA, Austin WEN, Paterson DM (2005) Extracellular cracking and content removal of the benthic diatom Pleurosigma angulatum (Quekett) by the benthic foraminifera Haynesina germanica (Ehrenberg). Mar Micropaleontol. https://doi.org/10.1016/j.marmicro.2005.07.002

  • Barnes CE, Cochran JK (1993) Uranium geochemistry in estuarine sediments: controls on removal and release processes. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(93)90367-6

  • Barwise AJG (1990) Role of nickel and vanadium in petroleum classification. Energy Fuels. https://doi.org/10.1021/ef00024a005

  • Becknamm B, Wagner T, Hofmann P (2011) Linking Coniacian–Santonian (OAE3) black-shale deposition to African climate variability: a reference section from the Eastern Tropical Atlantic at orbital time scales (Odp Site 959, Off Ivory Coast and Ghana). In: Deposition of organic-carbon-rich sediments: models. pp 125–143. https://doi.org/10.2110/pec.05.82.0125

  • Bein A, Amit O (1982) Depositional-environments of the Senonian Chert, phosphorite and oil-shale sequence in Israel as deduced from their organic-matter composition. Sedimentology 29:81–90

    Article  CAS  Google Scholar 

  • Bein A, Almogi-Labin A, Sass E (1990) Sulfur sinks and organic carbon relationships in Cretaceous organic-rich carbonates: implications for evaluation of oxygen-poor depositional environments. Am J Sci. https://doi.org/10.2475/ajs.290.8.882

  • Bernhard JM (1993) Experimental and field evidence of Antarctic foraminiferal tolerance to anoxia and hydrogen sulfide. Mar Micropaleontol. https://doi.org/10.1016/0377-8398(93)90033-T

  • Bernhard JM (2003) Potential symbionts in bathyal foraminifera. Science 299(5608):861. https://doi.org/10.1126/science.1077314

  • Bernhard JM, Bowser SS (1999) Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci Rev 46:149–165

    Google Scholar 

  • Bernhard JM, Reimers CE (1991) Benthic foraminiferal population fluctuations related to anoxia: Santa Barbara Basin. Biogeochemistry. https://doi.org/10.1007/BF00003221

  • Bernhard JM, Visscher PT, Bowser SS (2003) Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnol Oceanogr. https://doi.org/10.4319/lo.2003.48.2.0813

  • Bernhard JM, Habura A, Bowser SS, (2006) An endobiont-bearing allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. J Geophys Res Biogeosci. https://doi.org/10.1029/2005JG000158

  • Bernhard JM, Goldstein ST, Bowser SS (2010) An ectobiont-bearing foraminiferan, Bolivina pacifica, that inhabits microxic pore waters: cell-biological and paleoceanographic insights. Environ Microbiol. https://doi.org/10.1111/j.1462-2920.2009.02073.x

  • Bernhard JM, Casciotti KL, McIlvin MR, Beaudoin DJ, Visscher PT, Edgcomb VP (2012a) Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration. J Geophys Res Biogeosci. https://doi.org/10.1029/2012JG001949

  • Bernhard JM, Edgcomb VP, Casciotti KL, McIlvin MR, Beaudoin DJ (2012b) Denitrification likely catalyzed by endobionts in an allogromiid foraminifer. ISME J. https://doi.org/10.1038/ismej.2011.171

  • Bolle M-P, Adatte T (2001) Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Miner. https://doi.org/10.1180/000985501750177979

  • Böning P, Brumsack HJ, Schnetger B, Grunwald M (2009) Trace element signatures of Chilean upwelling sediments at ~36°S. Mar Geol. https://doi.org/10.1016/j.margeo.2009.01.004

  • Borchers SL, Schnetger B, Böning P, Brumsack HJ (2005) Geochemical signatures of the Namibian diatom belt: perennial upwelling and intermittent anoxia. Geochem Geophys Geosyst. https://doi.org/10.1029/2004GC000886

  • Bremner JM, Willis JP (1993) Mineralogy and geochemistry of the clay fraction of sediments from the Namibian continental margin and the adjacent hinterland. Mar Geol. https://doi.org/10.1016/0025-3227(93)90076-8

  • Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett. https://doi.org/10.1016/0012-821X(80)90035-7

  • Bruland KW (1983) Trace elements in sea-water. Chem Oceanogr. https://doi.org/10.1016/b978-0-12-588608-6.50009-2

  • Calvert SE, Pedersen TF (1993) Marine sediments, burial, pore water chemistry, microbiology and diagenesis geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol. https://doi.org/10.1016/0025-3227(93)90150-T

  • Corliss BH (1991) Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Current 17:195–236

    Google Scholar 

  • Corliss BH, Chen C (1988) Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology:716–719

    Google Scholar 

  • Cranston RE (1983) Chromium in Cascadia Basin, northeast Pacific Ocean. Mar Chem. https://doi.org/10.1016/0304-4203(83)90020-8

  • Cutter GA, Cutter LS (1995) Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean. Mar Chem. https://doi.org/10.1016/0304-4203(95)00019-N

  • Dybek J (1963) Zur Geochemie und Lagerstättenkunde des Urans. Clausthaler Heft zur Lagerstättenkunde und Geochemie der mineralische Rohstoffe, vol I. Borchert H (ed). Borntraeger, Berlin. Mineralogical Magazine - Mineralogical Society. https://doi.org/10.1180/minmag.1963.033.262.13

  • Eshet Y, Almogi-Labin A (1996) Calcareous nannofossils as paleoproductivity indicators in upper cretaceous organic-rich sequences in Israel. Mar Micropaleontol. https://doi.org/10.1016/0377-8398(96)00006-0

  • Eshet Y, Almogi-Labin A, Bein A (1994) Dinoflagellate cysts, paleoproductivity and upwelling systems: a Late Cretaceous example from Israel. Mar Micropaleontol 23:231–240. https://doi.org/10.1016/0377-8398(94)90014-0

    Article  Google Scholar 

  • Fleischer L, Gafsou R (2003) Top Judea Group digital structural map of Israel (1:200.000). Geophysical Institute of Israel Report 753/312/03

    Google Scholar 

  • Friedrich O (2010) Benthic foraminifera and their role to decipher paleoenvironment during mid-Cretaceous Oceanic Anoxic Events—the “anoxic benthic foraminifera” paradox. Rev Micropaléontologie 53:175–192. https://doi.org/10.1016/j.revmic.2009.06.001

    Article  Google Scholar 

  • Garcia D, Fonteilles M, Moutte J (1994) Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. J. Geol. https://doi.org/10.1086/629683

  • Garfunkel Z, Zak I, Freund R (1981) Active faulting in the dead sea rift. Tectonophysics 80:1–26. https://doi.org/10.1016/0040-1951(81)90139-6

    Article  Google Scholar 

  • Geslin E, Risgaard-Petersen N, Lombard F, Metzger E, Langlet D, Jorissen F (2011) Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors. J Exp Mar Biol Ecol. https://doi.org/10.1016/j.jembe.2010.10.011

  • Geslin E, Barras C, Langlet D, Nardelli MP, Kim JH, Bonnin J, Metzger E, Jorissen FJ (2014) Survival, reproduction and calcification of three benthic foraminiferal species in response to experimentally induced hypoxia. In: Kitazato H, Bernhard JM (eds) Approaches to study living foraminifera. Environmental science and engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54388-6_10

  • Giraudeau J, Bailey GW, Pujol C (2000) A high-resolution time-series analyses of particle fluxes in the Northern Benguela coastal upwelling system: carbonate record of changes in biogenic production and particle transfer processes. Deep Res Part II Top Stud Oceanogr. https://doi.org/10.1016/S0967-0645(00)00014-X

  • Gooday AJ, Bernhard JM, Levin LA, Suhr SB (2000) Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep Res Part II Top Stud Oceanogr. https://doi.org/10.1016/S0967-0645(99)00099-5

  • Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 113:44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007

    Article  Google Scholar 

  • Hare CE, DiTullio GR, Trick CG, Wilhelm SW, Bruland KW, Rue EL, Hutchins DA (2005) Phytoplankton community structure changes following simulated upwelled iron inputs in the Peru upwelling region. Aquat Microb Ecol. https://doi.org/10.3354/ame038269

  • Henderson P, Henderson G (2010) The Cambridge handbook of earth science data, Choice Reviews Online. Cambridge University Press, Cambridge, U.K, New York. https://doi.org/10.5860/choice.47-2354

  • Høgslund S, Revsbech NP, Cedhagen T, Nielsen LP, Gallardo VA (2008) Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. J Exp Mar Biol Ecol 359:85–91. https://doi.org/10.1016/j.jembe.2008.02.015

    Article  CAS  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1990) A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Mar Chem. https://doi.org/10.1016/0304-4203(90)90009-2

  • Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature. https://doi.org/10.1038/31203

  • Inthorn M, Mohrholz V, Zabel M (2006) Nepheloid layer distribution in the Benguela upwelling area offshore Namibia. Deep Sea Res Part I Oceanogr Res Pap 53:1423–1438. https://doi.org/10.1016/j.dsr.2006.06.004

    Article  Google Scholar 

  • Johnson KS (2001) Iron supply and demand in the upper ocean: is extraterrestrial dust a significant source of bioavailable iron? Global Biogeochem Cycles. https://doi.org/10.1029/2000GB001295

  • Jorissen FJ, De Stigter HC, Widmark JGV (1995) A conceptual model explaining benthic foraminiferal microhabitats. Mar Micropaleontol 26(1–4):3–15

    Google Scholar 

  • Jorissen FJ, Fontanier C, Thomas E (2007) Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. Dev Mar Geol. https://doi.org/10.1016/S1572-5480(07)01012-3

  • Klinkhammer GP, Palmer MR (1991) Uranium in the oceans: where it goes and why. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(91)90024-Y

  • Kniewald G, Branica M (1988) Role of uranium(V) in marine sedimentary environments: a geochemical possibility. Mar Chem. https://doi.org/10.1016/0304-4203(88)90002-3

  • Koho KA, Piña-Ochoa E (2012) Benthic foraminifera: inhabitants of low-oxygen environments. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for eukaryote survival and paleontological strategies. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_14

  • Krenkel E (1924) Der Syrische Bogen. Cent Miner Geol Palaeontol 9:274–281

    Google Scholar 

  • Kuhnt T, Friedrich O, Schmiedl G, Milker Y, Mackensen A, Lückge A (2013) Relationship between pore density in benthic foraminifera and bottom-water oxygen content. Deep Res Part I Oceanogr Res Pap. https://doi.org/10.1016/j.dsr.2012.11.013

  • Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(78)90001-7

  • Leiter C, Altenbach AV (2010) Benthic foraminifera from the diatomaceous mud belt off Namibia: characteristic species for severe anoxia. Palaeontol Electron 13:19

    Google Scholar 

  • Lewan MD (1984) Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(84)90219-9

  • Lewan MD, Maynard JB (1982) Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(82)90377-5

  • Lovley DR (1995) Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231. https://doi.org/10.1016/S0065-2113(08)60900-1

  • McArthur JM, Algeo TJ, Van De Schootbrugge B, Li Q, Howarth RJ (2008) Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography. https://doi.org/10.1029/2008PA001607

  • McManus J, Berelson WM, Klinkhammer GP, Hammond DE, Holm C (2005) Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2004.06.023

  • Meilijson A, Ashckenazi-Polivoda S, Ron-Yankovich L, Illner P, Alsenz H, Speijer RP, Almogi-Labin A, Feinstein S, Berner Z, Püttmann W, Abramovich S (2014) Chronostratigraphy of the Upper Cretaceous high productivity sequence of the southern Tethys, Israel. Cretac Res 50:187–213. https://doi.org/10.1016/j.cretres.2014.04.006

    Article  Google Scholar 

  • Meilijson A, Ashckenazi-Polivoda S, Illner P, Alsenz H, Speijer RP, Almogi-Labin A, Feinstein S, Püttmann W, Abramovich S (2015) Evidence for specific adaptations of fossil benthic foraminifera to anoxic-dysoxic environments. Paleobiology 42. https://doi.org/10.1017/pab.2015.31

  • Meilijson A, Ashckenazi-Polivoda S, Illner P, Alsenz H, Speijer RP, Almogi-Labin A, Feinstein S, Püttmann W, Abramovich S (2016) Evidence for specific adaptations of fossil benthic foraminifera to anoxic-dysoxic environments. Paleobiology 42:77–97. https://doi.org/10.1017/pab.2015.31

    Article  Google Scholar 

  • Meilijson A, Ashckenazi-Polivoda S, Illner P, Speijer RP, Almogi-Labin A, Feinstein S, Püttmann W, Abramovich S (2018) From phytoplankton to oil shale reservoirs: a 19-million-year record of the Late Cretaceous Tethyan upwelling regime in the Levant Basin. Mar Petrol Geol 95:188–205. https://doi.org/10.1016/j.marpetgeo.2018.04.012

    Article  CAS  Google Scholar 

  • Moodley L, Heip CHR, Middelburg JJ (1998) Benthic activity in sediments of the northwestern Adriatic Sea: sediment oxygen consumption, macro- and meiofauna dynamics. J Sea Res 40:263–280. https://doi.org/10.1016/S1385-1101(98)00026-4

    Article  Google Scholar 

  • Morford JL, Martin WR, Carney CM (2009) Uranium diagenesis in sediments underlying bottom waters with high oxygen content. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2009.02.014

  • Morton AC, Hallsworth CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment Geol. https://doi.org/10.1016/S0037-0738(98)00118-3

  • Okrusch M, Matthes S (2005) Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. Springer, Berlin

    Google Scholar 

  • Pan Y, Fleet ME (2019) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Phosphates Geochem Geobiol Mater Importance. https://doi.org/10.2138/rmg.2002.48.2

  • Pillet L, de Vargas C, Pawlowski J (2011) Molecular identification of sequestered diatom chloroplasts and kleptoplastidy in foraminifera. Protist. https://doi.org/10.1016/j.protis.2010.10.001

  • Piña-Ochoa E, Høgslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, Schweizer M, Jorissen F, Rysgaard S, Risgaard-Petersen N (2010) Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0908440107

  • Piper DZ, Perkins RB (2004) A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition. Chem Geol. https://doi.org/10.1016/j.chemgeo.2003.12.006

  • Pucci F, Geslin E, Barras C, Morigi C, Sabbatini A, Negri A, Jorissen FJ (2009) Survival of benthic foraminifera under hypoxic conditions: results of an experimental study using the CellTracker Green method. Mar Pollut Bull 59:336–351. https://doi.org/10.1016/j.marpolbul.2009.08.015

    Article  CAS  PubMed  Google Scholar 

  • Ravizza G, Paquay F (2008) Os isotope chemostratigraphy applied to organic-rich marine sediments from the Eocene-Oligocene transition on the West African margin (ODP Site 959). Paleoceanography. https://doi.org/10.1029/2007PA001460

  • Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op Den Camp HJM, Derksen JWM, Piña-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, Van Der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature. https://doi.org/10.1038/nature05070

  • Ruokolainen M, Pantsar-Kallio M, Haapa A, Kairesalo T (2000) Leaching, runoff and speciation of arsenic in a laboratory mesocosm. Sci Total Environ. https://doi.org/10.1016/S0048-9697(00)00521-0

  • Schneider-Mor A, Alsenz H, Ashckenazi-Polivoda S, Illner P, Abramovich S, Feinstein S, Almogi-Labin A, Berner Z, Püttmann W (2012) Paleoceanographic reconstruction of the late Cretaceous oil shale of the Negev, Israel: integration of geochemical, and stable isotope records of the organic matter. Palaeogeogr Palaeoclimatol Palaeoecol 319–320:46–57. https://doi.org/10.1016/j.palaeo.2012.01.003

    Article  Google Scholar 

  • Schumacher S, Lazarus D (2004) Regional differences in pelagic productivity in the late Eocene to early Oligocene—a comparison of southern high latitudes and lower latitudes. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1029/2002PA000804

  • Schwartz W (1976) Zeitschrift für allgemeine Mikrobiologie. In Wedepohl KH (ed) Handbook of geochemistry, vol II/4. 898 S, 113 Abb. Springer, Berlin, DM 238,00 (bei Subskription DM 238,40). https://doi.org/10.1002/jobm.3630160626

  • Sen Gupta BK (1999) Systematics of modern foraminifera. In: Modern foraminifera. Kluwer, Dordrecht. https://doi.org/10.1007/0-306-48104-9

  • Shoval S (2004a) Clay sedimentation along the southeastern Neo-Tethys margin during the oceanic convergence stage. Appl Clay Sci 24:287–298. https://doi.org/10.1016/j.clay.2003.08.010

    Article  CAS  Google Scholar 

  • Shoval S (2004b) Deposition of volcanogenic smectite along the southeastern Neo-Tethys margin during the oceanic convergence stage. Appl Clay Sci 24:299–311. https://doi.org/10.1016/j.clay.2003.08.009

    Article  CAS  Google Scholar 

  • Sinninghe Damsté JS, Kohnen MEL, De Leeuw JW (1990) Thiophenic biomarkers for palaeoenvironmental assessment and molecular stratigraphy. Nature 345:609–611. https://doi.org/10.1038/345609a0

  • Smillie RH, Hunter K, Loutit M (1981) Reduction of chromium(VI) by bacterially produced hydrogen sulphide in a marine environment. Water Res. https://doi.org/10.1016/0043-1354(81)90007-5

  • Sohrin Y, Matsui M, Kawashima M, Hojo M, Hasegawa H (1997) Arsenic biogeochemistry affected by eutrophication in lake Biwa, Japan. Environ Sci Technol. https://doi.org/10.1021/es960846w

  • Soudry D, Glenn CR, Nathan Y, Segal I, VonderHaar D (2006) Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Sci Rev 78:27–57. https://doi.org/10.1016/j.earscirev.2006.03.005

    Article  CAS  Google Scholar 

  • Spiro B, Rozenson I (1980) Distribution of iron species in some “oil shales” of the Judea Desert, Israel. Chem Geol. https://doi.org/10.1016/0009-2541(80)90034-0

  • Spiro B, Dinur D, Aizenshtat Z (1983) Evaluation of source, environments of deposition and diagenesis of some Israeli “oil shales”—N-Alkanes, fatty acids, tetrapyrroles and kerogen. Chem Geol. https://doi.org/10.1016/0009-2541(83)90015-3

  • Takeda S (1998) Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature. https://doi.org/10.1038/31674

  • Thomas E (1990) Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica). Proc Ocean Drill Program Sci Results 113:571–594

    Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol. https://doi.org/10.1016/j.chemgeo.2006.02.012

  • Tribovillard N, Bout-Roumazeilles V, Algeo T, Lyons TW, Sionneau T, Montero-Serrano JC, Riboulleau A, Baudin F (2008) Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Mar Geol. https://doi.org/10.1016/j.margeo.2008.04.016

  • Turekian KK (1977) The fate of metals in the oceans. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(77)90109-0

  • Turekian KK (2010) Marine Chemistry and Geochemistry, 2. ed. ed, Carbon. Academic Press, Amsterdam u.a. ISBN:9780080964836

    Google Scholar 

  • Wagner T (2002) Late Cretaceous to early Quaternary organic sedimentation in the eastern Equatorial Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/S0031-0182(01)00415-1

  • Widmark JGV, Malmgren BA (1992) Biogeography of terminal Cretaceous deep-sea benthic foraminifera from the Atlantic and Pacific Oceans. Palaeogeogr Palaeoclimatol Palaeoecol 92:375–405. https://doi.org/10.1016/0031-0182(92)90092-J

    Article  Google Scholar 

  • Yao W, Millero FJ (1995) The chemistry of the anoxic waters in the Framvaren Fjord, Norway. Aquat Geochem. https://doi.org/10.1007/BF01025231

  • Yokoyama Y, Tanaka K, Takahashi Y (2012) Differences in the immobilization of arsenite and arsenate by calcite. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2012.05.022

Download references

Acknowledgements

We would like to thank the ‘Levantine Upper Cretaceous group’ for their support and valued conversations and comments: S. Abramovich, A. Almogi-Labin, S. Feinstein, Z. Berner, W. Püttmann, R. Speijer and H. Alsenz. We wish to express our gratitude to S. Volin from Rotem Amfert Negev Company for his cooperation in the sampling process of the PAMA section. We wish to express our gratitude to Israel Energy Initiatives Ltd. for the use of the Aderet core material and laboratory equipment. We would like to thank the Israeli Ministry of Science and Technology (MOST) for their continued support of the ADSSC. This study was supported by The German-Israeli Foundation for Scientific Research and Development (GIF) grant no. 956-38.8/2007, by the Israeli Ministry of Infrastructure grant no. 277-17-018 and 27-17-005, and the Helmholtz Association (GRACE) in Karlsruhe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Meilijson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meilijson, A., Ashckenazi-Polivoda, S., Illner, P. (2020). Fossil Benthic Foraminifera Morphologic Adaptation (Kleptoplastidy) Within Low-Oxygen-Bottom Water Environments, Coupled with Geochemical Insights from the Late Cretaceous in the Levant Basin. In: Guex, J., S. Torday, J., Miller Jr., W. (eds) Morphogenesis, Environmental Stress and Reverse Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-47279-5_12

Download citation

Publish with us

Policies and ethics