Skip to main content

Environmental Control on Biotic Development in Siberia (Verkhoyansk Region) and Neighbouring Areas During Permian–Triassic Large Igneous Province Activity

  • Chapter
  • First Online:
Morphogenesis, Environmental Stress and Reverse Evolution

Abstract

We propose an updated ammonoid zonation for the Permian–Triassic boundary succession (the lower Nekuchan Formation) in the Verkhoyansk region of Siberia: (1) Otoceras concavum zone (uppermost Changhsingian); (2) Otoceras boreale zone (lowermost Induan); (3) Tompophiceras morpheous zone (lower Induan); and (4) Wordieoceras decipiens zone (lower Induan). The Tompophiceras pascoei zone, previously defined between the Otoceras boreale and Tompophiceras morpheous zones, is removed in our scheme. Instead of this the Tompophiceras pascoei epibole zone is proposed for the lower part of the Tompophiceras morpheous zone. New and previously published nitrogen isotope records are interpreted as responses to climatic fluctuations in the middle to higher palaeolatitudes of Northeastern Asia and these suggest a relatively cool climatic regime for the Boreal Superrealm; however the trend towards warming across the Permian–Triassic boundary transition is also seen. The evolutionary development and geographical differentiation of otoceratid ammonoids and associated groups are considered. It is likely that the Boreal Superrealm was their main refugium, where otocerid, dzhulfitid and some other ammonoids survived the major biotic crisis at the end of the Permian. The similarity of ontogenetic development of suture lines of Otoceras woodwardi Griesbach and O. boreale Spath gives some grounds for suggesting a monophyletic origin of the genus Otoceras, having bipolar distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algeo TJ, Rowe H, Hower JC, Schwark L, Hermann A, Heckel PH (2008) Oceanic denitrification during Late Carboniferous glacial-interglacial cycles. Nat Geosci 1:709–714

    CAS  Google Scholar 

  • Algeo T, Henderson CM, Ellwood B, Rowe H, Elswick E, Bates S, Lyons T, Hower JC, Smith C, Maynard B, Nays LE, Summons RE, Fulton J, Freeman KN (2012) Evidence for a diachronous Late Permian marine crisis from Canadian Arctic region. Geol Soc Am Bull 124(9/10):1424–1448

    CAS  Google Scholar 

  • Algeo TJ, Meyers PA, Robinson RS, Rowe H, Jiang GQ (2014) Icehouse-greenhouse variations in marine denitrification. Biogeosciences 11:1273–1295

    Google Scholar 

  • Altabet MA, Francois R, Murray DW, Ptell WL (1995) Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373:506–509

    CAS  Google Scholar 

  • Arkhipov YV (1974) Stratigrafiya triasaovykh otlozhenij vostochnoj Yakutii (Triassic stratigraphy of Eastern Yakutia). Yakutskoye knizhnoye izdatelstvo, Yakutsk, 273 p (in Russian)

    Google Scholar 

  • Bando Y (1973) On the Otoceratidae and Ophiceratidae. Sci Rep Tohoku Univ 6:337–351

    Google Scholar 

  • Baud AM, Margaritz M, Holser WT (1989) Permian–Triassic of the Tethys: carbon isotope stratigraphy. Geol Rundsch 78:649–677

    CAS  Google Scholar 

  • Bauersachs T, Schouten S, Compaore J, Wollenzien U, Stal LJ, Damsté JSS (2009) Nitrogen isotopic fractionation associated with growth on dinitrogen gas and nitrate by cyanobacteria. Limnol Oceanogr 54(4):1403–1411

    CAS  Google Scholar 

  • Biakov AS, Vedernikov IL (2007) Evidence for anoxia in deep environments of Northeast Asia. Dokl Earth Sci 417A(9):1325–1327

    CAS  Google Scholar 

  • Biakov AS, Zakharov YD, Horacek M, Richoz S, Kutygin RV, Ivanov YY, Kolesov EV, Konstantinov AG, Tuchkova MI, Mikhalitsyna TI (2016) New data on the structure and age of the terminal Permian strata in the South Verkhoyansk region (northeastern Asia). Russ Geol Geophys 57:282–293

    Google Scholar 

  • Biakov AS, Kutygin RV, Goryachev NA, Burnatny SS, Naumov AN, Yadrenkin AV, Vedernikov IL, Tretyakov AV, Brynko IV (2018) Discovery of the late Changhsingian bivalve complex and two fauna extinction episodes in northeastern Asia at the end of the Permian. Dokl Biol Sci 480:78–81

    CAS  PubMed  Google Scholar 

  • Bjerager M, Seidler L, Stemmerik L, Surlyk F (2006) Ammonoid stratigraphy and sedimentary evolution across the Permian–Triassic boundary in East Greenland. Geol Mag 143(5):635–656

    Google Scholar 

  • Bogoslovskaya MF, Kuzina LF, Leonova TB (1999) Classification and distribution of Late Palaeozoic ammonoids. In: Rozanov AY, Shevyrev AA (eds) Iskopaemye tsefalopody noveishiye dostizhenuya v ikh izuchenii (Fossil cephalopods: recent advances in their study). PIN RAN, Moscow, pp 89–124, (in Russian)

    Google Scholar 

  • Bond DG, Wignall PB (2010) Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geol Soc Am Bull 122(7/8):1265–1279

    CAS  Google Scholar 

  • Boulila S, Laskar J, Haq BU, Galbrun B, Hara N (2018) Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers. Supplementary material (SM1 & SM2). https://arxiv.org/pdf/1803.05623

  • Brosse M, Bucher H, Goudemand N (2016) Quantitative biochronology of the Permian-Triassic boundary in South China based on conodont unitary associations. Earth Sci Rev 155:153–171

    Google Scholar 

  • Burgess SD, Bowring S, Shen S (2014) High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci 111(9):3316–3321

    CAS  PubMed  Google Scholar 

  • Chao Z, Bucher H, Shen S-Z (2017) Griesbachian and Dienerian (Early Triassic) ammonoids from Qubu in the Mt. Everest area, southern Tibet. Palaeoword 26:650–662

    Google Scholar 

  • Cockell CS, Cathing DC, Davis WL, Snook K, Kepner RL, Lee P, McKay CP (2000) The ultraviolet environment of Mars: biological implications past, present and feature. Icarus 146(2):343–359

    CAS  PubMed  Google Scholar 

  • Dagys A, Ermakova S (1996) Induan (Triassic) ammonoids from north-eastern Asia. Rev Paléobiol 15(2):401–447

    Google Scholar 

  • Dagys AS, Arkhipov YV, Bytchkov YM (1979) Stratigrafiya triasovoj sistemy Severo-Vostoka Azii (Triassic stratigraphy of north-eastern Asia). Nauka, Moscow, 244 p (in Russian)

    Google Scholar 

  • Dagys AS, Arkhipov YV, Truschelyev AM (1984) Excursion 054. Permian and Triassic deposits in Yakutiya. Svodnyj putevoditel ekskursij 052, 053, 054. 055 (27 Mezhdunarodnyi Geologicheskij Kongress) Yakutskaya ASSR, Sibirskaya Platforma (Summary Field Guide Book of excursions 052, 053, 05 and 055 (27th International Geological Congress)). Nauka, Novosibirsk, p 68–89. (in Russian)

    Google Scholar 

  • Dagys AS, Dagis AA, Kazakov AM, Konstantinov AG, Kurushin NI (1986) Lower Induan biostratigraphy of eastern Verkhoyansk. In: Yanshin AL, Dagys AS (eds) Biostratigrafiya mezozoya Sibiri i Dalnrgo Vostoka (Mesozoic biostratigraphy of Siberia and Far East). Nauka, Novosibirsk, pp 21–31, (in Russian)

    Google Scholar 

  • Diener C (1897) The Cephalopoda of the Lower Trias. Palaeontologica Indica 15(2/1):1–181

    Google Scholar 

  • Domokhotov SV (1960) Induan stage and Otoceras zone of the eastern Verkhoyansk area. In: Kobelyatskij IA (ed) Materialy po geologg i poleznym iskopaemym Yakutskoj ASSR. 1 (Materials on geology and minerals of the Yakut ASSR. 1). Yakutskoye knizhnoye izdatelstvo, Yakutsk, pp 111–120, (in Russian)

    Google Scholar 

  • Dustira AM, Wignall PB, Joachimski M, Blomeier D, Hartkopf-Fröder C, Bond DPG (2013) Gradual onset of anoxia across the Permian–Triassic boundary in Svalbard, Norway. Palaeogeogr Palaeoclimatol Palaeoecol 374:303–313

    Google Scholar 

  • Garbelli C, Angiolini L, Brand U, Shen S, Jadoul F, Azmy K, Posenato R, Cao C (2014) The paradox of the Permian global oceanic anoxia. Permophiles 61:26–28

    Google Scholar 

  • Goudemand N, Romano C, Brayard A, Hochuli PA, Bucher H (2013) Comment on “Lethally hot temperatures during the Early Triassic greenhouse”. Science 339:1033a–1033c

    Google Scholar 

  • Grasby SE, Beauchamp B (2008) Intrabasin variability of the carbon-isotope record across the Permian–Triassic transition, Sverdrup Basin, Arctic Canada. Chem Geol 253:141–150

    CAS  Google Scholar 

  • Grasby SE, Sanei H, Beachamp B, Chen Z (2013) Mercury deposition through the Permo-Triassic biotic crisis. Chem Geol 351:209–216

    CAS  Google Scholar 

  • Grasby SE, Beauchamp B, Bond DPG, Wignall P, Talavera C, Galloway JM, Piepjohn K, Reinhardt L, Blomeier D (2015) Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Geol Soc Am Bull 127:1331–1347

    CAS  Google Scholar 

  • Grasby SE, Beauchamp B, Knies J (2016) Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44:779. https://doi.org/10.1130/G38141.1

    Article  Google Scholar 

  • Grasby SE, Beauchamp B, Bond DPG, Wignall P, Sanei H (2018) Mercury anomalies associated with three extinction events (Capitanian crises, latest Permian extinction and the Smithian/Spathian extinction in NW Pangea). Geol Mag 153:285–297

    Google Scholar 

  • Grigoryan AG, Alekseev AS, Joachimski MM, Gatovsky YA (2015) Permian–Triassic biotic crisis: a multidisciplinary study of Armenian sections. In: Nurgaliev DK (ed) XVIII International Congress on the Carboniferous and Permian (August 11–15, 2015, Kazan, Russia), Kazan, Kazan University Press, abstract volume (p 74)

    Google Scholar 

  • Hammer D, Jones MT, Schneebeli-Hermann E, Hansen BB, Bucher H (2019) Are Early Triassic extinction events associate with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction. Earth Sci Rev 195:179. https://doi.org/10.1016/j.earscirev.2019.04.016

    Article  CAS  Google Scholar 

  • Hermann E, Hochuli PA, Bucher H, Vigran JO, Wessert H, Bernasconi SM (2010) A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark platform). Global Planet Change 74:156–167

    Google Scholar 

  • Hermann E, Hochuli PA, Méhay S, Bucher H, Brühwiler T, Ware D, Hautmann M, Roohi G, ur-Rehman K, Yaseen A (2011) Organic matter and palaeoenvironmental signals during the early Triassic biotic recovery: the salt range and Surghar range records. Sediment Geol 234:19–41

    CAS  Google Scholar 

  • Hochuli PA, Vigran JO, Hermann E, Bucher H (2010) Multiple climatic changes around the Permian–Triassic boundary event revealed by an expanded palynological record from mid-Norway. GSA Bull 122(5/6):884–896

    Google Scholar 

  • Horacek M, Brander R, Abart R (2007a) Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr Palaeoclimatol Palaeoecol 252:347–354

    Google Scholar 

  • Horacek M, Richoz S, Brandner R, Krystyn L, Spötl C (2007b) Evidence for recurrent changes in Lower Triassic oceanic circulation if the Tethys: the Delta 13C record from marine sections in Iran. Palaeogeogr Palaleoclimatol Palaeoecol 252:355–369

    Google Scholar 

  • Horacek M, Wang X-D, Grossman EL, Richoz S, Cao Z (2007c) The carbon-isotope curve from the Chaohu section, China: different trends at the Induan-Olenekian boundary or diagenesis? Albertiana 35:41–45

    Google Scholar 

  • Horacek M, Koike T, Richoz S (2009) Lower Triassic δ13C isotope curve from shallow-marine carbonates in Japan, Panthalassa realm: confirmation of the Tethys δ13C curve. J Asian Earth Sci 3(6):481–490. https://doi.org/10.1016/j.jseaes.2008.05.005

    Article  Google Scholar 

  • Horacek M, Brandner R, Richoz R, Povoden E (2010) Lower Triassic sulphur isotope curve of marine sulphates from the Dolomites, N-Italy. Palaeogeogr Palaeoclimatol Palaeoecol 290(1–4):65–70. https://doi.org/10.1016/j.palaeo.2010.02.016

    Article  Google Scholar 

  • Hyatt A (1900) Ammonoidea. In: Zittel KA (ed) Textbook of palaeontology. C.R. Eastman, London, pp 502–592, 1st English ed

    Google Scholar 

  • Isozaki Y (1997) Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235–238

    CAS  PubMed  Google Scholar 

  • Jenkyns HC, Gröcke DR, Hesselbo SP (2001) Nitrogen isotope evidence for mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 16:593–603

    Google Scholar 

  • Jia C, Huang J, Kershaw S, Luo G (2012) Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction. Geobiology 10:60–71

    CAS  PubMed  Google Scholar 

  • Joachimsky MM, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y (2012) Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40:195–198

    Google Scholar 

  • Joachimski MM, Alekseev AS, Grigoryan A, Gatovsky YA (2020) Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections. The Geological Society of America Bulletin 132: 427–443. https://doi.org/10.1130/B35108.1

  • Kaiho K, Kajiwara Y, Nakano Y, Miura Y, Chen ZQ, Shi GR (2001) End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29:815–818

    CAS  Google Scholar 

  • Kaiho K, Chen ZQ, Sawda K (2009) Possible causes for a negative shift in the stable carbon isotope ratio before, during and after the end-Permian mass extinction in Meishan, South China. Aust J Earth Sci 56:799–808

    CAS  Google Scholar 

  • Kato Y, Nakao K, Isozaki Y (2002) Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chem Geol 182:15–34

    CAS  Google Scholar 

  • Knies J, Grasby SE, Beuchamp B, Schubert CJ (2013) Water mass denitrification during the latest Permian extinction in the Sverdrup Basin, Arctic Canada. Geology 41(2):167–170

    CAS  Google Scholar 

  • Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Palaeophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313

    CAS  Google Scholar 

  • Korchinskaya MV (1982) Obyasnitelnaya zapiska k stratngraficheskoj scheme mezozoya (triasa) Svalbarda (Explanatory note on the biostratigraphic scheme of the Mesozoic (Trias) of Spitsbergen). Sevmorgeologiya, Leningrad, 99 p (in Russian)

    Google Scholar 

  • Korostelev VI (1972) Stratigrafia triasovykh otlozhenij Vostochnogo Verkhoyanya (Triassic stratigraphy of the Eastern Verkhoyansk area). Yakutskoye knizhnoye izdatelstvo, Yakutsk, 174 p (in Russian)

    Google Scholar 

  • Korte C, Kozur HW (2010) Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review. J Asian Earth Sci 39:215–235

    Google Scholar 

  • Kotlyar GV, Zakharov YD, Koczyrkevicz BV, Kropacheva GS, Rostovcev KO, Chedija IO, Vuks GP, Guseva EA (1983) Pozdnepermskij etap evolyutsii organicheskogo mira (Dzhulfinskij i Dorashamskij yarusy SSSR) (Evolution of the latest Permian biota (Dzhulfian and Dorashamian regional stages in the USSR)). Nauka, Leningrad, 199 p (in Russian)

    Google Scholar 

  • Kozur HW (2007) Biostratigraphy and event stratigraphy in Iran around the Permian-Triassic boundary (PTB): implications for the causes of the PTB biotic crisis. Global Planet Change 55:155–176

    Google Scholar 

  • Kozur HW, Weems RE (2011) Detailed correlation and age of continental late Changhsingian and earliest Triassic beds: implications for the role of the Siberian trap in the Permian–Triassic biotic crisis. Palaeogeogr Palaeoclimatol Palaeoecol 308:22–40

    Google Scholar 

  • Krull ES, Retallack GJ, Campbrll HJ, Lyon GL (2000) δ13Corg chemostratigraphy of the Permian–Triassic boundary in the Maitai Group, New Zealand: evidence for high-latitudinal methane release. N Z J Geol Geophys 43:21–32

    CAS  Google Scholar 

  • Kurushin NI (1987) Drevnejshie triasovye dvustvorchatye mollyuski Yakutii (The oldest Triassic bivalves from Yakutiya). In: Dagys AS (ed) Boreal’nyj trias (Boreal Triassic). Nauka, Moscow, pp 99–110, (in Russian)

    Google Scholar 

  • Lozovsky VR (2013) Permian-Triassic crisis and its possible reason. Byulyuten Moskovskogo Obschestva Ispytatelej Prirody. Otdeleniye Geologicheskoye 88(1):49–58. (in Russian)

    Google Scholar 

  • Luo G, Wang Y, Kump LR, Algeo TJ, Yang H, Xie S (2011) Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction. Geology 39(7):647–650

    CAS  Google Scholar 

  • Nakazawa K, Nakamura K, Kimura G (1987) Discovery of Otoceras boreale Spath from West Spitsbergen. Proc Japan Acad Ser B 63(6):171–174

    Google Scholar 

  • Nakrem HA, Orchard M, Weitschart W, Hounslow MW, Beaity TW, Mørk A (2008) Triassic conodonts from Svalbard and the Boreal correlations. Polar Res 27(3):523–537

    Google Scholar 

  • Noetling F (1904) Ueber Medlicottia Waag. und Episageceras n. g. aus den permischen und triadischen Schichten indiens. Neues Jahrbuch für Mineralogy, Geologie und Paläontologie 19:334–376

    Google Scholar 

  • Parfenov LM, Kuzmin MI (2001) Tectonics, geodynamics and metallogeny of the Sakha Republic (Yakutia). MAIK Nauka Interperiodica, Moscow, 571 p

    Google Scholar 

  • Petrenko VM (1963) Some important finds of Early Triassic fauna on Spitsbergen. Uchyonye Zapiski NIIGA 3:50–54. (in Russian)

    Google Scholar 

  • Popow YN (1956) Otoceras in the lower Triassic of eastern Verkhoyansk. In: Kobelyatsky IA (ed) Materialy po geologii i poleznym iskopaemym Severo-Vostoka SSSR, vol 10. Magadan, Magadanskoye Knizhnoye Izdatelstvo, pp 64–81. (in Russian)

    Google Scholar 

  • Popow YN (1958) Find of Otoceras in the lower Triassic of eastern Verkhoyansk. Izvestiya Akademii Nauk SSSR Ser Geol 12:105–109. (in Russian)

    Google Scholar 

  • Popow YN (1961) Triasovye ammonoidei Severo-Vostoka SSSR (Triassic ammonoids of the North-Eastern USSR). Tudy NIIGA 79:1–180. (in Russian)

    Google Scholar 

  • Robinson RS, Kienast M, Albuquerque AL, Altalet M, Contreras S, Holz R, Dubots N, Francois R, Galbraith E, Hsu T, Ivanochko T, Jaccard S, Kao S, Kiefer T, Kienast S, Lehmann M, Martinez P, McCarthy M, Möbius J, Pederson T, Quan TM, Ryabenko E, Schmittner A, Schneider R, Schneider-Mor A, Thunell R, Yang J (2012) A review of nitrogen isotope alteration in marine sediments. Paleoceanography 27:1–13

    Google Scholar 

  • Romano C, Goudemand N, Vennemann TW, Ware D, Schneebeli-Hermann E, Hochuli PA, Brühwiler T, Brinkmann W, Bucher H (2013) Climatic and biotic upheavals following the end-Permian mass extinction. Nat Geosci 6:57–60

    CAS  Google Scholar 

  • Ruzhencev VE (1959) Classification of the superfamily Otocerataceae. Paleontologocheskij Zhurnal 2:57–67. (in Russian)

    Google Scholar 

  • Sadovnikov GN (2008) On the position of the “point of the lower Triassic boundary in global stratotype”. Stratigrafiya Geologicheskaya Correlyatsiya 16(1):34–50

    Google Scholar 

  • Sadovnikov GN (2016) Evolution of the biome of the trap plateau of Central Siberia. Paleontologicheskij Zhurnal 5:87–99. (in Russian)

    Google Scholar 

  • Saitoh M, Ueno Y, Nishizawa M, Isozaki Y, Takai K, Yao J, Ji Z (2014) Nitrogen isotope chemostratigraphy across the Permian-Triassic boundary at Chaotian, Sichuan, South China. J Asian Earth Sci 93:113–128

    Google Scholar 

  • Schindewolf OH (1968) Studien zur Stammesges chichte der Ammoniten, Lieferung 7. Abhandlungen der mathematisch-naturwissenschaftlichen Klasse. Akademie der Wissenschaften und der Literatur in Mainz 3:1–171

    Google Scholar 

  • Schobben M, Joachimski MM, Korn D, Leda L, Korte C (2014) Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondw Res 26:675–683

    CAS  Google Scholar 

  • Scotese CR (2014) Atlas of Permo–Triassic paleogeographic maps (Mollweide projection), maps 43—52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL. doi: https://doi.org/10.13140/2.1.2609.9209

  • Shevyrev AA (1968) Triassic ammonoids of the South USSR. Trudy PIN 110:1–272. (in Russian)

    Google Scholar 

  • Shevyrev AA, Ermakova SP (1979) Systematics of ceratites. Paleontologicheskij Zhurnal 1:52–58. (in Russian)

    Google Scholar 

  • Sobolev ES (1989) Triasovye nautilidy Severo-Vostochnoy Azii (Triassic nautilids of northeastern Asia). Nauka, Siberian Branch, Novosibirsk, 192 p (in Russian)

    Google Scholar 

  • Song H, Tong J, Algeo TJ, Horacek M, Qiu H, Tian L, Chen Z-Q (2013) Large vertical δ12CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism. Global Planet Change 105:7–20

    Google Scholar 

  • Spath LF (1930) The Eo-Triassic invertebrate fauna of East Greenland. Medd Grønland 83(1):1–90

    Google Scholar 

  • Spath LF (1935) Additions to the Eo-Triassic invertebrate fauna of East Greenland. Medd Grønland 98(2):1–115

    Google Scholar 

  • Spinosa C, Furnish WM, Glenister BF (1970) Araxoceratidae, Upper Permian ammonoids, from the Western Hemisphere. J Paleo 44(4):730–736

    Google Scholar 

  • Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic Greenhouse. Science 338:366–370

    CAS  PubMed  Google Scholar 

  • Takashi S, Kaiho K, Oba M, Kakegawa T (2010) A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa. Palaeogeogr Palaeoclimatol Palaeoecol 292:532–539

    Google Scholar 

  • Takashi S, Kaiho K, Kori RS, Hori RS, Gorjan P, Watanabe T, Yamakita S, Aita Y, Takemura A, Spörli KB, Kakegawa T, Oba M (2013) Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian-Triassic transition. Global Planet Change 105:68. https://doi.org/10.1016/J.gloplacha.2012.12.006

    Article  Google Scholar 

  • Tozer ET (1994) Canadian Triassic ammonoid faunas. Geol Surv Can Bull 467:1–663

    Google Scholar 

  • Twitchet RJ, Looy CV, Morant ER, Vissehes H, Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29(4):351–354

    Google Scholar 

  • Wedekind R (1916) Über Lobus, Suturallobus und Inzision. Zentralblatt fü Geologie und Paläontologie 8:185–195

    Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian-Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr Palaeoclimatol Palaeoecol 102:215–237

    Google Scholar 

  • Wignall PB, Twitchet RJ (1996) Oceanic anoxia and the end-Permian mass extinction. Science 272:1155–1158

    CAS  PubMed  Google Scholar 

  • Wignall PB, Twitchet RJ (2002) Extent, duration, and nature of the Permian-Triassic superanoxic event. Geol Soc Am Spec Paper 356:395–413

    Google Scholar 

  • Wignall PB, Bond DPG, Sun Y, Grasby SE, Beauchamp B, Joachimski MM, Blomeier DPG (2015) Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geol Mag 153:316–331

    Google Scholar 

  • Yin H, Song FK (2013) Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition. Sci China Earth Sci 56(1):1–13

    Google Scholar 

  • Yin H, Zhang K (1996) Eventostratigraphy of the Permian-Triassic boundary at Meishan section, South China. In: Yyn H (ed) The Palaeozoic-Mesozoic boundary (candidates of global stratotype section and point of the Permian–Triassic boundary). China University of Geosciences Press, Wuhan, pp 84–96

    Google Scholar 

  • Yin H, Xie S, Luo G, Algeo T, Zhang K (2012) Two episodes of environmental change at the Permian–Triassic boundary of the GSSP section Meishan. Earth Sci Rev 115:162–172

    Google Scholar 

  • Zakharov YD (1971) Otoceras of the boreal realm. Paleontologicheskij Zhurnal 3:50–59. (in Russian)

    Google Scholar 

  • Zakharov YD (1978) Rannetriasovye ammonoidei vostoka SSSR (Early Triassic ammonoids of the east USSR). Nauka, Moscow, 224 p (in Russian)

    Google Scholar 

  • Zakharov YD (1995) The Induan–Olenekian boundary in the Tethys and Boreal realm. Annali dei Musei Civici di Rovereto Sezione Archeologia, Storia e Scienze Naturali 11:133–156

    Google Scholar 

  • Zakharov YD (2002) Ammonoid succession of Setorym River (Verkhoyansk area) and problem of Permian–Triassic boundary in Boreal realm. J China Univ Geosci 13(2):107–123

    Google Scholar 

  • Zakharov YD (2003) Ammonoid succession in the Lower Triassic of the Verkhoyansk area and problem of the Otocerataceae, Xenodiscaceae and Proptychitaceae phylogeny. In: Kryukov AP, Yakimenko LV (eds) Problemy evolyutsii (Problems of evolution), vol 5. Dalnauka, Vladivostok, pp 244–262. (in Russian)

    Google Scholar 

  • Zakharov YD, Moussavi Abnavi N (2013) The ammonoid recovery after the end-Permian mass extinction: evidence from the Iran-Transcaucasia area, Siberia, Primorye and Kazakhstan. Acta Palaeontol Pol 58(1):127–147

    Google Scholar 

  • Zakharov YD, Pavlov AM (1986) The first find of an araxoceratid ammonoid in the Permian of the eastern part of the USSR. In: Zakharov YD, Onoprienko YI (eds) Permo-triasovye sobytiya v razvitii organicheskogo mira severo-vostochnoj Asii (Permian-Triassic events during the biotic evolution of North-East Asia). Academy of Sciences of the USSR, Far-Eastern Scientific Centre, Vladivostok, pp 74–85. (in Russian)

    Google Scholar 

  • Zakharov YD, Popov AM (2014) Recovery of brachiopod and ammonoid faunas following the end-Permian crisis: additional evidence from the lower Triassic of the Russian Far East and Kazakhstan. Aust J Earth Sci 25(1):1–44

    Google Scholar 

  • Zakharov YD, Naidin DP, Teis RV (1975) Oxygen isotope composition Early Triassic cephalopod shells of Arctic Siberia and salinity of the Boreal basins at the beginning of the Mesozoic. Izvestiya Akademii Nauk SSSR Ser Geol 4:101–113. (in Russian)

    Google Scholar 

  • Zakharov YD, Boriskina NG, Cherbadzhi AK, Popov AM, Kotlyar GV (1999) Main trends in Permo–Triassic shallow-water temperature changes: evidence from oxygen isotope and Ca-Mg ratio data. Albertiana 23:11–22

    Google Scholar 

  • Zakharov YD, Biakov AS, Baud A, Kozur H (2005) Significance of Caucasian sections for working out carbon-isotope standard for Upper Permian and Lower Triassic (Induan) and their correlation with the Permian of north-eastern Russia. J China Univ Geosci 16(2):141–151

    Google Scholar 

  • Zakharov YD, Popov AM, Biakov AS (2008) Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: evidence from the former USS. Polar Res 27(3):441–468

    Google Scholar 

  • Zakharov YD, Mousavi Abnavi N, Ghaedi M (2010) New species of Dzhulfian (Late Permian) ammonoids from the Hambast Formation of Central Iran. Paleontol J 44(6):614–631

    Google Scholar 

  • Zakharov YD, Biakov AS, Horacek М (2014) Global correlation of basal Triassic layers in the light of the first carbon isotope data on the Permian–Triassic boundary in Northeast Asia. Russ J Pac Geol 8(1):3–19

    Google Scholar 

  • Zakharov YD, Biakov AS, Richoz S, Horacek М (2015) Importance of carbon isotopic data of the Permian-Triassic boundary layers in the Verkhoyansk region for the global correlation of the basal Triassic layer. Dokl Earth Sci 460(1):1–5

    Google Scholar 

  • Zakharov YD, Horacek M, Popov AM, Bondarenko LG (2018a) Nitrogen and carbon isotope data of Olenekian to Anisian deposits from Kamenushka/south Primorye, far-eastern Russia and their palaeoenvironmental significance. Aust J Earth Sci 29(4):837–853

    CAS  Google Scholar 

  • Zakharov YD, Horacek M, Shigeta Y, Popov AM, Bondarenko LG (2018b) N and C isotopic composition of the lower Triassic of southern Primorye and reconstruction of the habitat conditions of marine organisms. Stratigr Geol Correl 26(5):534–551

    Google Scholar 

  • Zakharov YD, Horacek M, Shigeta Y, Popov AM, Maekawa T (2018c) N- and C isotopic composition of the lower Triassic of south Primorye and reconstruction of habitat conditions of marine organisms after end Permian mass extinction at the end of the Permian. Dokl Earth Sci 478(2):161–165

    CAS  Google Scholar 

  • Zakharov YD, Biakov AS, Horacek М, Goryachev NA, Vedernikov IL (2019) The first data on the N isotopic composition of the Permian and Triassic of northeastern Russia and their significance for paleotemperature reconstructions. Dokl Earth Sci 484(1):21–24

    CAS  Google Scholar 

  • Zakharov YD, Horacek М, Biakov AS (in press) First data on N-isotope composition of the Permian-Triassic in the Verkhoyansk region and their significance for reconstruction of marine environments. Stratigrafiya. Geologicheskaya Korrelyatsiya (in Russian)

    Google Scholar 

  • Zhao J, Liang X, Zheng Z (1978) Late Permian cephalopods of South China. Palaeontol Sin New Ser B 154(12):1–194

    Google Scholar 

  • Zhou Z, Glenister BF, Furnish WM, Spinosa C (1999) Multi-episodal extinction and ecological and differentiation of Permian ammonoids. In: Rozanov AY, Shevyrev AA (eds) Fossil cephalopods: recent advances in their study. Paleontological Institute RAS, Moscow, pp 195–212

    Google Scholar 

Download references

Acknowledgements

N-isotope analyses by E. Riegler (BLT Wiselbburg Research Center HBLFA Francisco-Josephinum, Austria) are gratefully acknowledged. We are also grateful to I.V. Brynko, I.V. Budnikov, S.S. Burnatyj, I.L Vedernikov, A.N. Kilyasov, V.I. Makoshin, A.N. Naumov and A.M. Popov from Magadan, Vladivostok and Yakutsk for their organising and taking part in our expeditions in the South Verkhoyansk region. Our special thanks to Tretyakovs, Felix F. and Maxim F., for the opportunity to use the Yakutsk Federal University field base on the left bank of the Vostochnaya Khandyga River (the Tompo Training Ground). This research was funded by the grants RFBR no. 18-05-00023, 18-05-00191, and 20-05-00604, in part by the Program for Improvement of the Competitiveness of Kazan (Volga River) Federal University among the world’s leading research and educational centers, and also in part (monographic study of new invertebrate collections from the South Verkhoyansk region) by the Russian Scientific Foundation, grant no. 19-17-00178. A monographic study of P-T cephalopods is done on state assignments for a number institutions of the Russian Academy of sciences (FEGI, DPMGI, and IPGG). D.P.G. Bond acknowledges funding from the Natural Environment Research Council (Grant NE/JO1799X/1) and the Royal Society (International Exchanges scheme-project “Volcanic and climatic impacts on Permian biota across Russian ecological zones”).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zakharov, Y.D., Biakov, A.S., Horacek, M., Kutygin, R.V., Sobolev, E.S., Bond, D.P.G. (2020). Environmental Control on Biotic Development in Siberia (Verkhoyansk Region) and Neighbouring Areas During Permian–Triassic Large Igneous Province Activity. In: Guex, J., S. Torday, J., Miller Jr., W. (eds) Morphogenesis, Environmental Stress and Reverse Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-47279-5_10

Download citation

Publish with us

Policies and ethics