Skip to main content

Investigation on Advanced Materials for Green Energy Development and Sustainable Industrial Processes

  • Chapter
  • First Online:
Science and Technology Innovation for a Sustainable Economy
  • 340 Accesses

Abstract

The present chapter gives an overview of the recent investigations of the author on advanced materials for various industrial applications with practical impact in daily lives. One area is the energy sector that includes energy storage systems specifically the Li-ion battery technology. In this part, results on the potential electrodes and electrolytes for future all solid-state batteries are discussed. Industrial catalysis is another major area of research where the particular focus has been given on TiO2-based photocatalysts as well as mesoporous oxide-based heterogeneous catalysts. Finally, various mechanisms for the corrosion and protection against corrosion of materials are discussed. All the research activities are performed theoretically using various computational chemistry tools. This chapter provides a proper scientific roadmap for an “industrially develoved” future Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Mazouzi A, Alamo A, Lidbury D, Moinereau D, Van Dyck S (2011) PERFORM 60: prediction of the effects of radiation for reactor pressure vessel and in-core materials using multi-scale modelling – 60 years foreseen plant lifetime. Nucl Eng Des 241:3403–3415

    Google Scholar 

  • Alauddin M, Islam MM, Hasan MK, Bredow T, Aziz MA (2016a) A theoretical investigation of the structural, spectroscopic and optical properties of adenine. Dhaka Univ J Sci 64(1):77–81

    Google Scholar 

  • Alauddin M, Islam MM, Aziz MA (2016b) Structural, spectroscopic and optical properties of monohydrated adenine: a theoretical study. Dhaka Univ J Sci 64(2):157–161

    Google Scholar 

  • Boudjemline A, Louail L, Islam MM, Diawara B (2011a) Dependence of pressure on elastic, electronic and optical properties of CeO2 and ThO2: a first principles study. Comput Mater Sci 50:2280–2286

    Google Scholar 

  • Boudjemline A, Islam MM, Louail L, Diawara B (2011b) Electronic and optical properties of BAs under pressure. Physica B 406:4272–4277

    Google Scholar 

  • Bredow T, Islam MM (2008) Theoretical study of low-index surfaces of trigonal B2O3. Surf Sci 602:2217–2221

    Google Scholar 

  • Bruce PG, Saidi MY (1992) A two-step model of intercalation. Solid State Ionics 51:187–190

    Google Scholar 

  • Costa D, Sharkas K, Islam MM, Marcus P (2009) Ab initio study of the chemical states of water on Cr2O3(0001): from the isolated molecule to saturation coverage. Surf Sci 603:2484–2493

    Google Scholar 

  • Heitjans P, Indris S (2003) Diffusion and ionic conduction in nanocrystalline ceramics. J Phys Condens Matter 15:R1257–R1289

    Google Scholar 

  • Heitjans P, Tobschall E, Wilkening M (2008) Ion transport and diffusion in nanocrystalline and glassy ceramics. Eur Phys J 161:97–108

    Google Scholar 

  • Indris S, Heitjans P (2002) Heterogeneous 7Li NMR relaxation in nanocrystalline Li2O:B2O3 composites. J Non Cryst Solids 307–310:555–564

    Google Scholar 

  • Indris S, Heitjans P, Uecker R, Roling B (2012) Li ion dynamics in a LiAlO2 single crystal studied by 7Li NMR spectroscopy and conductivity measurements. J Phys Chem C 116:14243–14247

    Google Scholar 

  • Islam MM (2019) Power to gas: a green technology for decarbonization of the energy sector. In: Climate adaptation for a sustainable economy: lessons from Bangladesh, an emerging Tiger of Asia. Nova Science Publisher. ISBN: 978-1-53616-927-0

    Google Scholar 

  • Islam MM, Bredow T (2009) Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J Phys Chem C 113:672–676

    Google Scholar 

  • Islam MM, Bredow T (2012) Theoretical investigation of migration pathways for Li diffusion in h-LiTiS2. Z Phys Chem 226:449

    Google Scholar 

  • Islam MM, Bredow T (2015a) 3D Li diffusion in c-LiTiS2. Z Phys Chem 229:1265–1274

    Google Scholar 

  • Islam MM, Bredow T (2015b) Interstitial Lithium diffusion pathways in γ-LiAlO2: a computational study. J Phys Chem Lett 6:4622–4626

    Google Scholar 

  • Islam MM, Bredow T (2015c) Rutile band-gap states induced by doping with manganese in various oxidation states. J Phys Chem C 119:5534–5541

    Google Scholar 

  • Islam MM, Bredow T (2016) Li ion diffusion in β –Li2TiO3: a theoretical study. J Phys Chem C 120:7061–7066

    Google Scholar 

  • Islam MM, Maslyuk VV, Bredow T, Minot C (2005) Structural and electronic properties of Li2B4O7. J Phys Chem B 109:13597–13604

    Google Scholar 

  • Islam MM, Bredow T, Minot C (2006a) Theoretical analysis of structural, energetic, electronic and defect properties of Li2O. J Phys Chem B 110:9413–9420

    Google Scholar 

  • Islam MM, Bredow T, Minot C (2006b) Ionic conductivity of Li2B4O7. J Phys Chem B 110:17518–17523

    Google Scholar 

  • Islam MM, Bredow T, Minot C (2006c) Comparison of trigonal B2O3 structures with high and low space group symmetry. Chem Phys Lett 418:565–568

    Google Scholar 

  • Islam MM, Bredow T, Indris S, Heitjans P (2007a) Enhanced conductivity at the interface of Li2O:B2O3 nanocomposite: atomistic models. Phys Rev Lett 99(145502):1–4

    Google Scholar 

  • Islam MM, Bredow T, Gerson A (2007b) Electronic properties of oxygen deficient and aluminium doped rutile. Phys Rev B 76(045217):1–9

    Google Scholar 

  • Islam MM, Costa D, Calatayud M, Tielens F (2009a) Characterization of supported vanadium oxide species on silica: a periodic DFT investigation. J Phys Chem C 113:10740–10746

    Google Scholar 

  • Islam MM, Diawara B, Maurice V, Marcus P (2009b) Bulk and surface properties of Cu2O. J Mol Struc Theochem 903:41–48

    Google Scholar 

  • Islam MM, Diawara B, Maurice V, Marcus P (2009c) First principles investigation of the stabilization mechanism of the polar copper terminated Cu2O(111) surface. Surf Sci 603:2087–2095

    Google Scholar 

  • Islam MM, Diawara B, Maurice V, Marcus P (2009d) Atomistic modeling of voiding mechanisms at oxide/alloy interfaces. J Phys Chem C Lett 113:9978–9981

    Google Scholar 

  • Islam MM, Diawara B, Maurice V, Marcus P (2010) Surface reconstruction modes of Cu2O(001) surface: a first principles study. Surf Sci 604:1516

    Google Scholar 

  • Islam MM, Bhuiyan MDH, Bredow T, Try A (2011a) Theoretical investigation of the non-linear optical properties of substituted anilines and N,N-dimethylaniline. Comput Theor Chem 967:165–170

    Google Scholar 

  • Islam MM, Bredow T, Heitjans P (2011b) Formation and mobility of Li point defects in LiBO2: a first-principles investigation. J Phys Chem C 115:12343–12349

    Google Scholar 

  • Islam MM, Bredow T, Gerson A (2011c) Electronic properties of vanadium-doped TiO2. ChemPhysChem 12:3467–3473

    Google Scholar 

  • Islam MM, Calatayud M, Pacchioni G (2011d) Hydrogen adsorption and diffusion on the anatase TiO2 (101) surface: a first-principles investigation. J Phys Chem C 115:6809–6814

    Google Scholar 

  • Islam MM, Noumet A-G, Wiame F, Bacos M-P, Diawara B, Maurice V, Marcus P (2011e) Reconstruction of TiAl intermetallic surfaces: a combined STM and DFT study. J Phys Chem C 115:3372–3377

    Google Scholar 

  • Islam MM, Diawara B, Marcus P, Costa D (2011f) Synergy between iono-covalent bonds and van der Waals interactions in SAMs formation: a first-principles study of adsorption of carboxylic acids on the ZnO(0001) surface. Catal Today 177:39–49

    Google Scholar 

  • Islam MM, Bredow T, Heitjans P (2012a) The ionic conductivity in lithium-boron oxide materials and its relation to structural, electronic and defect properties: insights from theory. J Phys Condens Matter 24(203201):1–29

    Google Scholar 

  • Islam MM, Wilkening M, Heitjans P, Bredow T (2012b) Insights into Li+ migration pathways in α-Li3VF6: a first principles investigation. J Phys Chem Lett 3:3120–3124

    Google Scholar 

  • Islam MM, Heitjans P, Bredow T (2016) Structural analysis and Li migration pathways in Ramsdellite Li2Ti3O7: a theoretical study. J Phys Chem C 120:5–10

    Google Scholar 

  • Islam MM, Uhlendorf J, Witt E, Schmidt H, Heitjans P, Bredow T (2017a) Lithium diffusion mechanisms in β-LiMO2 (M = Al, Ga): a combined experimental and theoretical study. J Phys Chem C 121:27788–27796

    Google Scholar 

  • Islam MM, Couvant T, Marcus P, Diawara B (2017b) Stress concentration in the bulk Cr2O3: Effects of temperature and point defects. J Chem 2017. Article ID 7039436: 8 pages

    Google Scholar 

  • Kim C-S, Kim DJ, Hwang Y-H, Kim HK, Kim JN (2002) Electrical properties of Li2B4O7 single crystals in the [001] direction: comparison between crystals grown from Li2CO3 and B2O3 mixed powder and from Li2B4O7 powder. J Appl Phys 92:4644–4648

    Google Scholar 

  • Kim S, Oguchi H, Toyama N, Sato T, Takagi S, Otomo T, Arunkumar D, Kuwata N, Kawamura J, Orimo S (2019) A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat Commun 10:1081. (pp 1-9)

    Google Scholar 

  • Kuhn A, Tobschall E, Heitjans P (2009) Li ion diffusion in nanocrystalline and nanoglassy LiAlSi2O6 and LiBO2 – structure-dynamics relations in two glass forming compounds. Z Phys Chem 223:1359–1377

    Google Scholar 

  • Langer J, Epp V, Heitjans P, Mautner FA, Wilkening M (2013) Lithium motion in the anode material LiC6 as seen via time- domain 7Li NMR. Phys Rev B 88:094304

    Google Scholar 

  • Lebreau F, Islam MM, Diawara B, Marcus P (2014) Structural, magnetic, electronic, defect, and diffusion properties of Cr2O3: a DFT+U study. J Phys Chem C 118:18133–18145

    Google Scholar 

  • Maslyuk VV, Islam MM, Bredow T (2005) Electronic properties of compounds of the Li2O:B2O3 system. Phys Rev B 72(125101):9

    Google Scholar 

  • Matin MA, Islam MM, Bredow T, Aziz MA (2017a) The effects of oxidation states, spin states and solvents on molecular structure, stability and spectroscopic properties of Fe-catechol complexes: a theoretical study. Adv Chem Eng Sci 7:137–153

    Google Scholar 

  • Matin MA, Islam MM, Aziz MA (2017b) Characterization of Chromium-tris(catecholate) complex: a theoretical study. Dhaka Univ J Sci 65(2):113–117

    Google Scholar 

  • Nakhal S, Lerch M, Koopman J, Islam MM, Bredow T (2013) Crystal structure of 3R- LiTiS2 and its stability compared to other polymorphs. Z Anorg Allg Chem 639:2822–2825

    Google Scholar 

  • Ruprecht B, Wilkening M, Uecker R, Heitjans P (2012) Extremely slow Li ion dynamics in monoclinic Li2TiO3-probing macroscopic jump diffusion via 7Li NMR stimulated echoes. Phys Chem Chem Phys 14:11974–11980

    Google Scholar 

  • Sasinska A, Bialuschewski D, Islam MM, Singh T, Deo M, Mathur S (2017) Experimental and theoretical insights into influence of hydrogen and nitrogen plasma on the water splitting performance of ALD grown TiO2 thin films. J Phys Chem C 121:15538–15548

    Google Scholar 

  • Schmidt A, Lerch M, Eufinger J-P, Janek J, Tranca I, Islam MM, Bredow T, Dolle R, Wiemhöfer J-P, Boysen H, Hölzel M (2014a) Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): an investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ionics 254:48–58

    Google Scholar 

  • Schmidt A, Lerch M, Eufinger J-P, Janek J, Dolle R, Wiemhöfer H-D, Tranca I, Islam MM, Bredow T, Boysen H, Hölzel M (2014b) CN-mayenite Ca12Al14O32(CN)2: replacing mobile oxygen ions by cyanice ions. Solid State Sci 38:69–78

    Google Scholar 

  • Stoyanova A, Islam MM, Borisov G, Bredow T, Lefterova E, Slavcheva E (2016) Effect of partial replacement of Pt-based catalysts with Fe- and co for oxygen evolution reaction in PEM water electrolysis: a combined theoretical and experimental study. J Prog Res Chem 3:158–165

    Google Scholar 

  • Thinius S, Islam MM, Heitjans P, Bredow T (2014) Structure, defects and li+ migration pathways in LiC6. J Phys Chem C 118:2273–2280

    Google Scholar 

  • Thinius S, Islam MM, Bredow T (2016) Reconstruction of low-index graphite surfaces. Surf Sci 649:60–65

    Google Scholar 

  • Thinius S, Islam MM, Bredow T (2018) The structure of reconstructed chalcopyrite surfaces. Surf Sci 669:1–9

    Google Scholar 

  • Tielens F, Islam MM, Skara G, De Proft F, Shishido T, Dzwigaj S (2012) Chromium sites in zeolite framework: chromyl or chromium hydroxyl groups? Microporous Mesoporous Mater 159:66–73

    Google Scholar 

  • Van Der Geest AG, Islam MM, Couvant T, Diawara B (2013) Energy ordering of grain boundaries in Cr2O3: insights from theory. J Phys Condens Matter 25(485005):1–12

    Google Scholar 

  • Werth V, Volgmann K, Islam MM, Heitjans P, Bredow T (2017) Density functional theory evaluated for structural and electronic properties of 1T-LixTiS2 and lithium ion migration in 1T-Li0.94TiS2, Z. Phys Chem 231(7–8):1263–1278

    Google Scholar 

  • Wiame F, Islam MM, Salgin B, Swiatowska J, Costa D, Diawara B, Maurice V, Marcus P (2016) Zn effect on STM imaging of brass surfaces. Surf Sci 644:148–152

    Google Scholar 

  • Wiedemann D, Islam MM, Nakhal S, Senyshyn A, Bredow T, Lerch M (2015) Lithium diffusion pathways in 3R-LixTiS2: a combined neutron diffraction and computational study. J Phys Chem C 119:11370–11381

    Google Scholar 

  • Wiedemann D, Nakhal S, Rahn J, Witt E, Islam MM, Zander S, Heitjans P, Schmidt H, Bredow T, Wilkening M, Lerch M (2016) Unravelling ultraslow Lithium-ion diffusion in γ-LiAlO2: experiments with tracers, neutrons, and charge carriers. Chem Mater 28:915–924

    Google Scholar 

  • Wiedemann D, Islam MM, Bredow T, Lerch M (2017) Diffusion pathways and activation energies in crystalline lithium-ion conductors. Z Phys Chem 231(7–8):1279–1302

    Google Scholar 

  • Wilkening M, Küchler W, Heitjans P (2006) From ultraslow to fast lithium diffusion in the 2D ion conductor Li0.7TiS2 probed directly by stimulated-echo NMR and nuclear magnetic relaxation. Phys Rev Lett 97:065901

    Google Scholar 

  • Wilkening M, Romanova EE, Nakhal S, Weber D, Lerch M, Heitjans P (2010) Time-resolved and site-specific insights into migration pathways of Li+ in α-Li3VF6 by 6Li 2D exchange MAS NMR. J Phys Chem C 114:19083–19088

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazharul M. Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, M.M. (2020). Investigation on Advanced Materials for Green Energy Development and Sustainable Industrial Processes. In: Islam, M., Hossain, M. (eds) Science and Technology Innovation for a Sustainable Economy. Springer, Cham. https://doi.org/10.1007/978-3-030-47166-8_1

Download citation

Publish with us

Policies and ethics