Skip to main content

Agricultural Land Use, Production, and Water Quality

  • Chapter
  • First Online:
Water Quality and Agriculture

Abstract

This chapter introduces topics, concepts, relationships, and tools that are essential to understanding the effects of agriculture on water quality, the significance of these effects, and economic and technological drivers of water pollution from agriculture. The chapter also introduces a systematic watershed-based paradigm for understanding and addressing agriculture and tools used for watershed planning. The chapter begins with a description of the types of water quality problems that result from agricultural production and their economic and ecological significance. The evolution of agriculture as a significant source of water quality problems is connected to economic and technological developments in agricultural production. The chapter turns from causes and consequences to introducing physical processes and relationships at multiple spatial scales, from field to watershed, that must be understood to design effective and efficient solutions. The chapter concludes with the introduction to the watershed-based management and various types of modeling tools used in planning and policy design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.who.int/water_sanitation_health/diseases-risks/diseases/methaemoglob/en/

  2. 2.

    Livestock feed provides essential nutrients including phosphorus. Animals are not perfectly efficient in the utilization of nutrients with the results that a fraction of the intake is removed in urine or manure .

  3. 3.

    Load shares are estimated for different source types from the nine monitoring stations downstream. These loads contribute to 40% of all nutrient loads. The developments of relative shares for the entire watershed are likely to be very similar.

  4. 4.

    http://hdr.undp.org/en/content/2019-human-development-index-ranking

  5. 5.

    Chesapeake Bay Program Media Release 07-08-2020. https://www.chesapeakebay.net/images/press_release_pdf/Media_Release_SAV_7.8.20.pdf

  6. 6.

    The findings earned Ernest Chain, Howard Florey, and Alexander Fleming a Nobel Prize in Medicine in 1945.

  7. 7.

    https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

  8. 8.

    This accounts for about 2% of the global oil production of about 81 million barrels a day.

  9. 9.

    The development was prompted by the demand of ammonium nitrate for ammunition, and the embargo imposed by the Allied powers of the WWI that cut down the supply of guano, the primary source of nitrogen at the time.

  10. 10.

    Any geologic material containing relatively high concentrations of phosphorus such as apatite.

  11. 11.

    At the micro scale, removing environmentally sensitive lands from agricultural production is a very cost-effective method in some cases. It has been a policy priority in the US with beneficial impacts.

  12. 12.

    As noted by Einarsson et al. (2020), manure export driven by recent mandates has decreased the phosphorus balances substantially in the Netherlands.

  13. 13.

    The geological cycle of phosphorus eventually leads to permanent burial to sediments . After very long time, these sediments will form the future deposits of sedimentary phosphate rock. Sedimentary phosphorus forms 95% of current global phosphate resources (Pufahl and Groat 2017).

  14. 14.

    Annex, G.L.W.Q.A., 4. Objectives and Targets Task Team, 2015. Recommended Phosphorus Load Targets for Lake Erie. Final Report to the Nutrients Annex Subcommittee. Available at [https://www.epa.gov/glwqa/report-recommended-phosphorus-loading-targets-lake-erie].

  15. 15.

    BMPs are generally defined as practices to reduce agricultural pollution loads compared to “conventional” practices. Further discussion is presented in Chap. 4.

References

  • Ahlvik, L. and Iho, A. 2018. Optimal geoengineering experiments. Journal of Environmental Economics and Management 92: 148–168.

    Google Scholar 

  • Ahtiainen, H., J. Artell, M. Czajkowski, B. Hasler, L. Hasselström, K. Hyytiäinen, J. Meyerhoff, J.C. Smart, T. Söderqvist, K. Zimmer, and J. Khaleeva. 2013. Public preferences regarding use and condition of the Baltic Sea—An international comparison informing marine policy. Marine Policy 42: 20–30.

    Article  Google Scholar 

  • Alexander, R.B., R.A. Smith, G.E. Schwarz, E.W. Boyer, J.V. Nolan, and J.W. Brakebill. 2008. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environmental Science & Technology 42 (3): 822–830.

    Article  Google Scholar 

  • Aloe, A.K., F. Bouraoui, B. Grizzetti, G. Bidoglio, and A. Pistocchi. 2014. Managing nitrogen and phosphorus loads to water bodies: Characterisation and solutions. Towards macro-regional integrated nutrient management. Joint Research Centre, JRC-Ispra.

    Google Scholar 

  • Arabi, M., Meals, D.W. and Hoag, D.L.K. 2012. Watershed modelling: National institute of food and agriculture – conservation effects assessment project. In D.L. Osmond, D.W. Meals, D.L.K. Hoag, and M. Arabi, eds., How to build better agricultural conservation programs to protect water quality: National Institute of Food and Agriculture conservation effects assessment project (pp. 84–119). Ankeny, IA: Soil Conservation Society of America.

    Google Scholar 

  • Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams. 1998. Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association 34 (1): 73–89.

    Article  Google Scholar 

  • Ator, Scott W., John W. Brakebill, and Joel D. Blomquist. 2011. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed: An empirical model. Vol. 5167. US Department of the Interior, US Geological Survey.

    Google Scholar 

  • Baker, D.B., Confesor, R., Ewing, D.E., Johnson, L.T., Kramer, J.W. and Merryfield, B.J. 2014. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: The importance of bioavailability. Journal of Great Lakes Research 40 (3): 502–517.

    Google Scholar 

  • Barlow, P.M., and E.G. Reichard. 2010. Saltwater intrusion in coastal regions of North America. Hydrogeology Journal 18 (1): 247–260.

    Article  Google Scholar 

  • Beven, K. 2005. On the concept of model structural error. Water Science and Technology 52 (6): 167–175.

    Google Scholar 

  • ———. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320 (1–2): 18–36.

    Google Scholar 

  • ———. 2016. Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal 61 (9): 1652–1665.

    Google Scholar 

  • Bicknell, B.R., J.C. Imhoff, J.L. Kittle Jr, A.S. Donigian Jr, and R.C. Johanson. 1993. Hydrologic simulation program-FORTRAN (HSPF): User’s Manual for Release 10. Rep. No. EPA/600/R-93, 174.

    Google Scholar 

  • Billen, G., J. Garnier, and L. Lassaletta. 2013. The nitrogen cascade from agricultural soils to the sea: Modelling nitrogen transfers at regional watershed and global scales. Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1621): 20130123.

    Article  Google Scholar 

  • Bouwman, L., K.K. Goldewijk, K.W. Van Der Hoek, A.H. Beusen, D.P. Van Vuuren, J. Willems, M.C. Rufino, and E. Stehfest. 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences 110 (52): 20882–20887.

    Article  Google Scholar 

  • BP. 2020. Statistical review of world energy 2020. 69th edn. Available at https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf

  • Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K. and Jacinto, G.S. 2018. Declining oxygen in the global ocean and coastal waters. Science 359 (6371).

    Google Scholar 

  • Brownell, H., and S.D. Eaton. 1975. The Colorado River salinity problem with Mexico. The American Journal of International Law 69 (2): 255–271.

    Article  Google Scholar 

  • Canfield, D., E. Kristensen, and B. Thamdrup. 2005. Aquatic geomicrobiology. Elsevier.

    Google Scholar 

  • Cao, P., C.C. Lu, and Z. Yu. 2018. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: Application rate, timing, and fertilizer types. Earth System Science Data Discussion 10: 969.

    Article  Google Scholar 

  • Carpenter, S.R. 2008. Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences 105 (32): 11039–11040.

    Article  Google Scholar 

  • Carpenter, S.R., and E.M. Bennett. 2011. Reconsideration of the planetary boundary for phosphorus. Environmental Research Letters 6 (1): 014009.

    Article  Google Scholar 

  • Carpenter, S.R., J.J. Cole, J.R. Hodgson, J.F. Kitchell, M.L. Pace, D. Bade, K.L. Cottingham, T.E. Essington, J.N. Houser, and D.E. Schindler. 2001. Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs 71 (2): 163–186.

    Article  Google Scholar 

  • Ceballos, G., and P.R. Ehrlich. 2002. Mammal population losses and the extinction crisis. Science 296 (5569): 904–907.

    Article  Google Scholar 

  • Champetier, A., and D.A. Sumner. 2019. Marginal costs and likely supply elasticities for pollination and honey. American Journal of Agricultural Economics 101 (5): 1373–1385.

    Article  Google Scholar 

  • Chesapeake Bay Program. 2017. Water quality standards attainment and monitoring 2020. Available at https://www.chesapeakeprogress.com/clean-water/water-quality. Retrieved August 18, 2020.

  • Chesapeake Bay Program (CBP). 2020. Water Quality Standards Attainment and Monitoring. Published online at Chesapeake Progress. Retrieved from: https://www.chesapeakeprogress.com/?/clean-water/water-quality [online resource]

  • Clearwater, R.L., T. Martin, and T. Hoppe, eds. 2016. Environmental sustainability of Canadian agriculture: Agri-environmental indicator report series—Report #4. Ottawa: Agriculture and Agri-Food Canada.

    Google Scholar 

  • Conley, D.J. 1999. Biogeochemical nutrient cycles and nutrient management strategies. In Man and River Systems, 87–96. Dordrecht: Springer.

    Chapter  Google Scholar 

  • De Vries, W., J. Kros, C. Kroeze, and S.P. Seitzinger. 2013. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability 5 (3–4): 392–402.

    Article  Google Scholar 

  • Deliman, P.N., R.H. Glick, and C.E. Ruiz. 1999. Review of watershed water quality models. TR W-99-1. U.S. Washington, DC: Army Corps of Engineers.

    Book  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321 (5891): 926–929.

    Article  Google Scholar 

  • Dodd, R.J. and Sharpley, A.N. 2016. Conservation practice effectiveness and adoption: Unintended consequences and implications for sustainable phosphorus management. Nutrient cycling in agroecosystems 104 (3): 373–392.

    Google Scholar 

  • Dodd, Jason R., and Antonio P. Mallarino. 2005. Soil-test phosphorus and crop grain yield responses to long-term phosphorus fertilization for corn-soybean rotations. Soil Science Society of America Journal 69 (4): 1118–1128.

    Article  Google Scholar 

  • Dodds, W.K., W.W. Bouska, J.L. Eitzmann, T.J. Pilger, K.L. Pitts, A.J. Riley, J.T. Schloesser, and D.J. Thornbrugh. 2009. Eutrophication of US freshwaters: Analysis of potential economic damages. Environmental Science & Technology 43 (1): 12–19.

    Article  Google Scholar 

  • Döll, P. 2002. Impact of climate change and variability on irrigation requirements: A global perspective. Climatic Change 54 (3): 269–293.

    Article  Google Scholar 

  • Dudley, N., and S. Alexander. 2017. Agriculture and biodiversity: A review. Biodiversity 18 (2–3): 45–49.

    Article  Google Scholar 

  • Dunlap, C.R., K.S. Sklenar, and L.J. Blake. 2015. A costly endeavor: Addressing algae problems in a water supply. Journal-American Water Works Association 107 (5): E255–E262.

    Article  Google Scholar 

  • Einarsson, R., D. Pitulia, and C. Cederberg. 2020. Subnational nutrient budgets to monitor environmental risks in EU agriculture: Calculating phosphorus budgets for 243 EU28 regions using public data. Nutrient Cycling in Agroecosystems: 1–15.

    Google Scholar 

  • Ekholm, P. and Lehtoranta, J., 2012. Does control of soil erosion inhibit aquatic eutrophication? Journal of environmental management 93 (1): 140–146.

    Google Scholar 

  • European Commission. 2012. A blueprint to safeguard Europe’s water resources. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.

    Google Scholar 

  • FAO. 2014. Area equipped for irrigation (infographic). AQUASTAT. Database. Rome. http://www.fao.org/nr/water/aquastat/infographics/Irrigation_eng.pdf. Retrieved September 2020.

  • Faunt, C.C., M. Sneed, J. Traum, and J.T. Brandt. 2016. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology Journal 24 (3): 675–684.

    Article  Google Scholar 

  • Flanagan, D.C., and M.A. Nearing. 1995. USDA-Water Erosion Prediction Project: Hillslope profile and watershed model documentation. Nserl Rep 10: 1–123.

    Google Scholar 

  • Fleming, Patrick, Erik Lichtenberg, and David A. Newburn. 2018. Evaluating impacts of agricultural cost sharing on water quality: Additionality, crowding In, and slippage. Journal of Environmental Economics and Management 92: 1–19.

    Article  Google Scholar 

  • Forrest, R.D. 1982. Early history of wound treatment. Journal of the Royal Society of Medicine 75 (3): 198.

    Article  Google Scholar 

  • Gallai, N., J.M. Salles, J. Settele, and B.E. Vaissière. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68 (3): 810–821.

    Article  Google Scholar 

  • Geissen, V., H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg, S.E. van de Zee, and C.J. Ritsema. 2015. Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research 3 (1): 57–65.

    Article  Google Scholar 

  • Goldhamer, D.A., and E. Fereres. 2017. Establishing an almond water production function for California using long-term yield response to variable irrigation. Irrigation Science 35 (3): 169–179.

    Article  Google Scholar 

  • Goldstein, R.A. 2001. Watershed analysis risk management framework (WARMF): Update one. Topical Report. EPRI, Palo Alto.

    Google Scholar 

  • Goulson, D. 2014. Pesticides linked to bird declines. Nature 511 (7509): 295–296.

    Article  Google Scholar 

  • Grafton, R.Q., G.D. Libecap, E.C. Edwards, R.J. O’Brien, and C. Landry. 2012. Comparative assessment of water markets: Insights from the Murray–Darling Basin of Australia and the Western USA. Water Policy 14 (2): 175–193.

    Article  Google Scholar 

  • Gren, M. 2001. International versus national actions against nitrogen pollution of the Baltic Sea. Environmental and Resource Economics 20 (1): 41–59.

    Article  Google Scholar 

  • Gunnell, D., and M. Eddleston. 2003. Suicide by intentional ingestion of pesticides: A continuing tragedy in developing countries. International Journal of Epidemiology 32 (6): 902–909.

    Article  Google Scholar 

  • Haith, D.A., and L.L. Shoemaker. 1987. Generalized watershed loading functions for stream flow nutrients 1. JAWRA Journal of the American Water Resources Association 23 (3): 471–478.

    Article  Google Scholar 

  • Hamdan, M.N., M.J. Post, M.A. Ramli, and A.R. Mustafa. 2018. Cultured meat an Islamic perspective. Journal of Religion & Health 57 (6): 2193–2206.

    Article  Google Scholar 

  • Hart, B.T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith, and K. Swadling. 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210 (1–2): 105–144.

    Article  Google Scholar 

  • Harter, T., and J. Lund. 2012. Addressing nitrate in California’s drinking water: Executive summary. Report, UC Davis. Available at http://groundwaternitrate.ucdavis.edu/files/138958.pdf

  • Harvey, J.W. 2016. Hydrologic exchange flows and their ecological consequences in river corridors. In Stream ecosystems in a changing environment, 1–83. Academic Press.

    Google Scholar 

  • Helander, B., A. Bignert, and L. Asplund. 2008. Using raptors as environmental sentinels: Monitoring the white-tailed sea eagle Haliaeetus albicilla in Sweden. Ambio: A Journal of the Human Environment 37 (6): 425–431.

    Article  Google Scholar 

  • HELCOM. 2018. HELCOM Thematic assessment of eutrophication 2011–2016. Baltic Sea Environment Proceedings No. 156. Available at http://stateofthebalticsea.helcom.fi/pressures-and-their-status/eutrophication/#core-indicators-on-direct-effects

  • Henley, W.F., M.A. Patterson, R.J. Neves, and A.D. Lemly. 2000. Effects of sedimentation and turbidity on lotic food webs: A concise review for natural resource managers. Reviews in Fisheries Science 8 (2): 125–139.

    Article  Google Scholar 

  • Ho, J.C., and A.M. Michalak. 2017. Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading. Journal of Great Lakes Research 43 (3): 221–228.

    Article  Google Scholar 

  • Howarth, R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Annual Review of Ecology and Systematics 19 (1): 89–110.

    Article  Google Scholar 

  • Huffman, W.E., and R.E. Evenson. 2001. Structural and productivity change in US agriculture, 1950–1982. Agricultural Economics 24 (2): 127–147.

    Article  Google Scholar 

  • Hyytiäinen, K., B. Hasler, S. Ericsdotter, M. Nekoro, K. Blyh, J. Artell, L. Ahlvik, and H. Ahtiainen. 2013. Worth it: Benefits outweigh costs in reducing eutrophication in the Baltic. In BalticSTERN summary report for HELCOM 2013 ministerial meeting. Helsinki: Helsinki Commission. [Online]: http://helcom.fi/Documents/Ministerial2013/Associated%20documents/Background/BalticSternReport.pdf.

    Google Scholar 

  • Ireland, R.L. 1983. Land subsidence in the San Joaquin Valley, California, as of 1983. Water-resources investigations report 85-4196. U.S. Geological Survey. Available at https://pubs.usgs.gov/wri/1985/4196/report.pdf. Retrieved September 2020.

  • Jarvie, H.P., L.T. Johnson, A.N. Sharpley, D.R. Smith, D.B. Baker, T.W. Bruulsema, and R. Confesor. 2017. Increased soluble phosphorus loads to Lake Erie: Unintended consequences of conservation practices? Journal of Environmental Quality 46 (1): 123–132.

    Article  Google Scholar 

  • Kadim, I.T., O. Mahgoub, S. Baqir, B. Faye, and R. Purchas. 2015. Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture 14 (2): 222–233.

    Article  Google Scholar 

  • Kahru, M., R. Elmgren, J. Kaiser, N. Wasmund, and O. Savchuk. 2020. Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors. Harmful Algae 92: 101739.

    Article  Google Scholar 

  • Keeler, B.L., J.D. Gourevitch, S. Polasky, F. Isbell, C.W. Tessum, J.D. Hill, and J.D. Marshall. 2016. The social costs of nitrogen. Science Advances 2 (10): e1600219.

    Article  Google Scholar 

  • Kirkby, M.J., and N.J. Cox. 1995. A climatic index for soil erosion potential (CSEP) including seasonal and vegetation factors. Catena 25 (1–4): 333–352.

    Article  Google Scholar 

  • Kling, C.L., R.W. Arritt, G. Calhoun, and D.A. Keiser. 2017. Integrated assessment models of the food, energy, and water nexus: A review and an outline of research needs. Annual Review of Resource Economics 9: 143–163.

    Article  Google Scholar 

  • Knisel, W.G. 1980. CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems (No. 26). Department of Agriculture, Science and Education Administration.

    Google Scholar 

  • ———. 1991. CREAMS/GLEAMS: A development overview. Proceedings of the CREAMS/GLEAMS Symposium, Publication (Vol. 4, pp. 9–17).

    Google Scholar 

  • Kosenius, A.K. 2010. Heterogeneous preferences for water quality attributes: The case of eutrophication in the Gulf of Finland, the Baltic Sea. Ecological Economics 69 (3): 528–538.

    Article  Google Scholar 

  • Lake Erie LaMP. 2019. Environment and Climate Change Canada and the U.S. Environmental Protection Agency. Lake Erie Lakewide Action and Management Plan, 2019–2023.

    Google Scholar 

  • Lee, J.A., and T.E. Gill. 2015. Multiple causes of wind erosion in the Dust Bowl. Aeolian Research 19: 15–36.

    Article  Google Scholar 

  • Lekagul, A., V. Tangcharoensathien, and S. Yeung. 2019. Patterns of antibiotic use in global pig production: A systematic review. Veterinary and Animal Science 7: 100058.

    Article  Google Scholar 

  • Levin, M.D. 1983. Value of bee pollination to US agriculture. American Entomologist 29 (4): 50–51.

    Google Scholar 

  • Loucks, D.P. and van Beek, E. 2017. Water resources planning and management: An overview. Water Resource Systems Planning and Management, pp.1–49.

    Google Scholar 

  • Ludena, C.E., T.W. Hertel, P.V. Preckel, K. Foster, and A. Nin. 2007. Productivity growth and convergence in crop, ruminant, and nonruminant production: Measurement and forecasts. Agricultural Economics 37 (1): 1–17.

    Article  Google Scholar 

  • Maccoux, M.J., A. Dove, S.M. Backus, and D.M. Dolan. 2016. Total and soluble reactive phosphorus loadings to Lake Erie: A detailed accounting by year, basin, country, and tributary. Journal of Great Lakes Research 42 (6): 1151–1165.

    Article  Google Scholar 

  • MacDonald, J.M. 2020. Tracking the consolidation of U.S. agriculture. Applied Economic Perspectives and Policy 00 (00): 1–19.

    Google Scholar 

  • Mahmoud, M.R., and L.A. Garcia. 2000. Comparison of different multicriteria evaluation methods for the red bluff diversion dam. Environmental Modelling & Software 15 (5): 471–478.

    Article  Google Scholar 

  • Mateo-Sagasta, J., and J. Burke. 2010. State of land and water (SOLAW). Background report on water quality and agriculture interactions, a global overview. Rome: FAO.

    Google Scholar 

  • Mateo-Sagasta, J., S.M. Zadeh, and H. Turral, eds. 2018. More people, more food, worse water? A global review of water pollution from agriculture. Rome/Colombo: FAO/International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE).

    Google Scholar 

  • Micklin, P., N.V. Aladin, T. Chida, N. Boroffka, I.S. Plotnikov, S. Krivonogov, and K. White. 2020. The Aral Sea: A story of devastation and partial recovery of a large Lake. In Large Asian Lakes in a Changing World, 109–141. Cham: Springer.

    Chapter  Google Scholar 

  • Miller, S.N., D.J. Semmens, D.C. Goodrich, M. Hernandez, R.C. Miller, W.G. Kepner, and D.P. Guertin. 2007. The automated geospatial watershed assessment tool. Environmental Modelling & Software 22 (3): 365–377.

    Article  Google Scholar 

  • Moore, C., D. Guignet, K. Maguire, C. Dockins, and N. Simon. 2015. A stated preference study of the Chesapeake Bay and Watershed Lakes (No. 2168-2018-8163).

    Google Scholar 

  • Morgan, R.P.C., J.N. Quinton, R.E. Smith, G. Govers, J.W.A. Poesen, G. Chisci, and D. Torri. 1998. The EUROSEM model. In Modelling Soil Erosion by Water, 389–398. Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Moriasi, D.N., King, K.W., Bosch, D.D., Bjorneberg, D.L., Teet, S., Guzman, J.A. and Williams, M.R. 2016. Framework to parameterize and validate APEX to support deployment of the nutrient tracking tool. Agricultural Water Management 177: 146–164.

    Google Scholar 

  • Mottet, A., C. de Haan, A. Falcucci, G. Tempio, C. Opio, and P. Gerber. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security 14: 1–8.

    Article  Google Scholar 

  • Mund, M.D., U.H. Khan, U. Tahir, B.E. Mustafa, and A. Fayyaz. 2017. Antimicrobial drug residues in poultry products and implications on public health: A review. International Journal of Food Properties 20 (7): 1433–1446.

    Article  Google Scholar 

  • National Research Council (NRC). 2001. Assessing the TMDL approach to water quality management. National Academies Press.

    Google Scholar 

  • ———. 2012. National Research Council, 2012. Science for environmental protection: the road ahead. National Academies Press.

    Google Scholar 

  • Niskanen, O., A. Iho, and L. Kalliovirta. 2020. Scenario for structural development of livestock production in the Baltic littoral countries. Agricultural Systems 179: 102771.

    Article  Google Scholar 

  • OECD. 2013. OECD compendium of Agri-environmental indicators. Paris: OECD Publishing. https://doi.org/10.1787/9789264186217-en.

    Book  Google Scholar 

  • ———. 2017. Diffuse pollution, Degraded waters: Emerging policy solutions. OECD studies on water. Paris: OECD Publishing. https://doi.org/10.1787/9789264269064-en.

    Book  Google Scholar 

  • Ohio, E.P.A. 2010. Ohio Lake Erie phosphorus task force final report. Ohio EPA OH Task Force.

    Google Scholar 

  • Ollikainen, M., and J. Honkatukia. 2001. Towards efficient pollution control in the Baltic Sea: An anatomy of current failure with suggestions for change. Ambio: A Journal of the Human Environment 30 (4): 245–253.

    Article  Google Scholar 

  • Osmond, D., D. Meals, D. Hoag, M. Arabi, and A. Luloff. 2012. Improving conservation practices program to protect water quality in agricultural watersheds: Lessons learned from the National Institute of Food and Agriculture– Conservation Effects Assessment Project. Journal of Soil and Water Conservation 67 (5): 122A–127A.

    Google Scholar 

  • Overseer. 2020. Overseer scientific model. Available at https://www.overseer.org.nz/our-model. Retrieved September 2020.

  • Paerl, H.W. 2009. Controlling eutrophication along the freshwater–marine continuum: Dual nutrient (N and P) reductions are essential. Estuaries and Coasts 32 (4): 593–601.

    Article  Google Scholar 

  • Pavela, R. 2014. Limitation of plant biopesticides. In Advances in plant biopesticides, 347–359. New Delhi: Springer.

    Chapter  Google Scholar 

  • Playán, E., and L. Mateos. 2006. Modernization and optimization of irrigation systems to increase water productivity. Agricultural Water Management 80 (1–3): 100–116.

    Article  Google Scholar 

  • Post, M.J. 2012. Review: Cultured meat from stem cells: Challenges and prospects. Meat Science 92 (3): 297–301.

    Article  Google Scholar 

  • Pote, D.H., Daniel, T.C., Moore Jr, P.A., Nichols, D.J., Sharpley, A.N. and Edwards, D.R. 1996. Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Science Society of America Journal 60 (3): 855–859.

    Google Scholar 

  • Pretty, J.N., C.F. Mason, D.B. Nedwell, R.E. Hine, S. Leaf, and R. Dils. 2003. Environmental costs of freshwater eutrophication in England and Wales. Environmental Science & Technology 37: 201–208.

    Article  Google Scholar 

  • Pufahl, P.K., and L.A. Groat. 2017. Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper. Economic Geology 112 (3): 483–516.

    Article  Google Scholar 

  • Ritchie, H. 2017. Meat and dairy production. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/meat-production [online resource].

  • ———. 2019. “Half of the world’s habitable land is used for agriculture”. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/global-land-for-agriculture [Online Resource]

  • Roberson, J.A. 2014. A tough anniversary year. Journal-American Water Works Association 106 (11): 18–23.

    Article  Google Scholar 

  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, and B. Nykvist. 2009. Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society 14 (2).

    Google Scholar 

  • Rolland, N.C.M., C.R. Markus, and M.J. Post. 2020. The effect of information content on acceptance of cultured meat in a tasting context. PLOS ONE 15 (4): e0231176.

    Article  Google Scholar 

  • Ronquillo, M.G., and J.C.A. Hernandez. 2017. Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control 72: 255–267.

    Article  Google Scholar 

  • Roser, M., and H. Ritchie. 2013 Hunger and undernourishment. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/hunger-and-undernourishment [online resource].

  • Savchuk, O.P. 2018. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Frontiers in Marine Science 5: 95.

    Article  Google Scholar 

  • Schechner, V., E. Temkin, S. Harbarth, Y. Carmeli, and M.J. Schwaber. 2013. Epidemiological interpretation of studies examining the effect of antibiotic usage on resistance. Clinical Microbiology Reviews 26 (2): 289–307.

    Article  Google Scholar 

  • Schmidtko, S., L. Stramma, and M. Visbeck. 2017. Decline in global oceanic oxygen content during the past five decades. Nature 542 (7641): 335–339.

    Article  Google Scholar 

  • Selman, M., and S. Greenhalgh. 2010. Eutrophication: Sources and drivers of nutrient pollution. Renewable Resources Journal 26 (4): 19–26.

    Google Scholar 

  • Seré, C., H. Steinfeld, and J. Groenewold. 1996. World livestock production systems. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Sharpley, Andrew. 2000. Phosphorus availability. Handbook of Soil Science: D18–D30.

    Google Scholar 

  • Sharpley, A., H.P. Jarvie, A. Buda, L. May, B. Spears, and P. Kleinman. 2013. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality 42 (5): 1308–1326.

    Article  Google Scholar 

  • Shoemaker, L., Dai, T., Koenig, J. and Hantush, M. 2005. TMDL model evaluation and research needs. Cincinnati OH: National Risk Management Research Laboratory, US Environmental Protection Agency.

    Google Scholar 

  • Shortle, J.S., and R.C. Griffin. 2001. Economic perspectives on irrigated agriculture and the environment. In Irrigated agriculture, and the environment, ed. J.S. Shortle and R.C. Griffin. Edward Elgar Publishing Ltd.

    Google Scholar 

  • Shortle, J. and Horan, R.D. 2017. Nutrient pollution: A wicked challenge for economic instruments. Water Economics and Policy 3 (02): p.1650033.

    Google Scholar 

  • Shortle, J.S., Mihelcic, J.R., Zhang, Q. and Arabi, M. 2020. Nutrient control in water bodies: A systems approach. Journal of Environmental Quality 49 (3): 517–533.

    Google Scholar 

  • Smolders, A., and J.G.M. Roelofs. 1993. Sulphate-mediated iron limitation and eutrophication in aquatic ecosystems. Aquatic Botany 46 (3–4): 247–253.

    Article  Google Scholar 

  • Southwick, E.E., and L. Southwick Jr. 1992. Estimating the economic value of honeybees (Hymenoptera: Apidae) as agricultural pollinators in the United States. Journal of Economic Entomology 85 (3): 621–633.

    Article  Google Scholar 

  • Steffen, W., K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, S.R. Carpenter, W. De Vries, C.A. De Wit, and C. Folke. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347 (6223).

    Google Scholar 

  • Stone, W.W., R.J. Gilliom, and K.R. Ryberg. 2014. Pesticides in US streams and rivers: Occurrence and trends during 1992–2011. Environ. Sci. Technol. 48 (19): 11025–11030.

    Google Scholar 

  • Sutton, M.A., A. Bleeker, C.M. Howard, J.W. Erisman, Y.P. Abrol, M. Bekunda, A. Datta, E. Davidson, W. De Vries, O. Oenema, and F.S. Zhang. 2013. Our nutrient world, The challenge to produce more food & energy with less pollution. Centre for Ecology & Hydrology.

    Google Scholar 

  • Testa, J.M., Clark, J.B., Dennison, W.C., Donovan, E.C., Fisher, A.W., Ni, W., Parker, M., Scavia, D., Spitzer, S.E., Waldrop, A.M. and Vargas, V.M. 2017. Ecological forecasting and the science of hypoxia in Chesapeake Bay. BioScience 67(7): 614–626.

    Google Scholar 

  • Toledo. 2020. A watertight plan. Ohio: City of Toledo. Available at http://toledoh2o.com/the-plan/. Retrieved September 2020.

    Google Scholar 

  • Tuomisto, H., and M.J.T. Teixeira de Mattos. 2011. Environmental impacts of cultured meat production. Environmental Science and Technology 46 (14): 6117–6123.

    Article  Google Scholar 

  • United Nations. 2019. World population prospects 2019. Department of Economic and Social Affairs. Available at https://population.un.org/wpp/Graphs/DemographicProfiles/Line/900.

  • USBR. 2015. Shasta Lake water resources investigation, feasibility report. U.S. Department of the Interior, Bureau of Reclamation. Available at https://www.usbr.gov/mp/ncao/slwri/docs/feasability/slwri-final-fr-full.pdf. Retrieved September 2020.

  • USDA. 2017. Cost of pollination. Available at https://downloads.usda.library.cornell.edu/usda-esmis/files/d504rk335/ht24wn48h/zg64tp76q/CostPoll-12–21–2017.pdf. Retrieved September 2020.

  • ———. 2019. USDA ERS data. Fertilizer Use and Price. Available at https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx. Retrieved August 2020.

  • ———. 2020. USDA ERS. U.S. bioenergy statistics. Available at https://www.ers.usda.gov/data-products/us-bioenergy-statistics/. Retrieved August 2020.

  • USEPA, 2016. National Rivers and Streams Assessment 2008–2009: A Collaborative Survey. Washington, DC: U.S. Environmental Protection Agency, Office of Water and Office of Research and Development, EPA/841/R-16/007, March.

    Google Scholar 

  • USGS, 2020. U.S. Geological Survey, Mineral Commodity Summaries. 2020. Phosphate Rock. Available at https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-phosphate.pdf. Retrieved August 2020.

  • van Dijk, K.C., J.P. Lesschen, and O. Oenema. 2016. Phosphorus flows and balances of the European Union member states. Science of the Total Environment 542: 1078–1093.

    Article  Google Scholar 

  • van Ittersum, M.K., and K.G. Cassman. 2013. Yield gap analysis—Rationale, methods, and applications—Introduction to the special issue. Field Crops Research 143: 1–3.

    Article  Google Scholar 

  • van Kauwenbergh, S.J., M. Stewart, and R. Mikkelsen. 2013. World reserves of phosphate rock… a dynamic and unfolding story. Better Crops 97 (3): 18–20.

    Google Scholar 

  • van Weert, F., J. Van der Gun, and J. Reckman. 2009. Global overview of saline groundwater occurrence and genesis. International Groundwater Resources Assessment Centre.

    Google Scholar 

  • Vieno, N., P. Hallgren, P. Wallberg, M. Pyhälä, S. Zandaryaa, and Baltic Marine Environment Protection Commission. 2017. Pharmaceuticals in the aquatic environment of the Baltic Sea region: A status report. Vol. 1. UNESCO Publishing.

    Google Scholar 

  • von Liebig, J.F. 1859. Letters on modern agriculture. J. Wiley.

    Google Scholar 

  • Wainger, L.A., D.H. Secor, C. Gurbisz, W.M. Kemp, P.M. Glibert, E.D. Houde, J. Richkus, and M.C. Barber. 2017. Resilience indicators support valuation of estuarine ecosystem restoration under climate change. Ecosystem Health and Sustainability 3 (4): e01268.

    Article  Google Scholar 

  • Wheeler, D.M. 2015. OVERSEER®TechnicalManualTechnical Manual for the description of the OVERSEER®Nutrient Budgets engine. ISSN: 2253-461X.

    Google Scholar 

  • Wheeler, S., A. Loch, A. Zuo, and H. Bjornlund. 2014. Reviewing the adoption and impact of water markets in the Murray–Darling Basin, Australia. Journal of Hydrology 518: 28–41.

    Article  Google Scholar 

  • Whittemore, R.C. 1998. The BASINS model. Water Environment & Technology 10 (12): 57–61.

    Google Scholar 

  • Williams, J.R. 1985. The physical components of the EPIC model. In Soil Erosion and conservation, ed. S.A. El-Swaify, W.C. Moldenhauer, and A. Lo, 272–284. Ankeny: Soil Conservation Society of America.

    Google Scholar 

  • Wischmeier, W.H., and D.D. Smith 1978. Predicting rainfall erosion losses: A guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.

    Google Scholar 

  • Young, R.A., C.A. Onstad, D.D. Bosch, and W.P. Anderson. 1987. AGNPS, Agricultural Non-Point Source Pollution Model: A Watershed Analysis Tool. USDA Conservation Report 35. Washington, DC: USDA-ARS.

    Google Scholar 

  • Yuan, L., T. Sinshaw, and K.J. Forshay. 2020. Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models. Geosciences 10 (1): 25.

    Article  Google Scholar 

  • Zaffiri, L., J. Gardner, and L.H. Toledo-Pereyra. 2012. History of antibiotics. From salvarsan to cephalosporins. Journal of Investigative Surgery 25 (2): 67–77.

    Article  Google Scholar 

  • Zhang, W., T.H. Ricketts, C. Kremen, K. Carney, and S.M. Swinton. 2007. Ecosystem services and dis-services to agriculture. Ecological Economics 64 (2): 253–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Shortle .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shortle, J., Ollikainen, M., Iho, A. (2021). Agricultural Land Use, Production, and Water Quality. In: Water Quality and Agriculture. Palgrave Studies in Agricultural Economics and Food Policy. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-47087-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47087-6_3

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-47086-9

  • Online ISBN: 978-3-030-47087-6

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics