Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1081))

Abstract

The median two-sample test for the location problem is considered. We adopt this nonparametric test to interval-valued data perceived from the epistemic perspective, where the available observations are just interval-valued perceptions of the unknown true outcomes of the experiment. Unlike typical generalizations of statistical procedures into the interval-valued framework, the proposed test entails very low computational costs. However, the presence of interval-valued data results in set-valued p-value which leads no longer to a definite binary decision (reject or not reject the null hypothesis) but may indicate the abstention from making a final decision if the information is too vague.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Couso, I., Dubois, D.: Statistical reasoning with set-valued information: ontic vs. epistemic views. Int. J. Approximate Reasoning 55, 1502–1518 (2014)

    Article  MathSciNet  Google Scholar 

  2. Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: The fuzzy p-value. Metrika 59, 21–29 (2004)

    Article  MathSciNet  Google Scholar 

  3. Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference. Marcel Dekker (2003)

    Google Scholar 

  4. Grzegorzewski, P.: Fuzzy tests - defuzzification and randomization. Fuzzy Sets Syst. 118, 437–446 (2001)

    Article  MathSciNet  Google Scholar 

  5. Grzegorzewski, P.: Two-sample median test for vague data. In: Proceedings of the 4th Conference of the European Society for Fuzzy Logic and Technology (Eusflat 2005), Barcelona, pp. 621–626 (2005)

    Google Scholar 

  6. Grzegorzewski, P.: k-sample median test for vague data. Int. J. Intell. Syst. 24, 529–539 (2009)

    Article  Google Scholar 

  7. Grzegorzewski, P.: The Kolmogorov goodness-of-fit test for interval-valued data. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2017), pp. 1–6 (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015557

  8. Grzegorzewski, P.: Testing goodness-of-fit with interval-valued dat. In: Bentkowska, U., et al. (eds.) Proceedings of the 3rd International Symposium on Fuzzy Sets – Uncertainty Modelling ISFS 2017, Rzeszów, pp. 9–15 (2017)

    Google Scholar 

  9. Grzegorzewski, P., Śpiewak, M.: The sign test for interval-valued data. In: Ferraro, M.B., et al. (eds.) Soft Methods for Data Science, pp. 269–276. Springer, Cham (2016)

    MATH  Google Scholar 

  10. Grzegorzewski, P., Śpiewak, M.: The Mann-Whitney test for interval-valued data. In: Kacprzyk, J., et al. (eds.) Advances in Fuzzy Logic and Technology 2017, Advances in Intelligent Systems and Computing, vol. 642, pp. 188–199, Springer, Cham (2017)

    Google Scholar 

  11. Hukuhara, M.: Integration des applications measurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10, 205–223 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Kreinovich, V., Servin, C.: How to test hypotheses when exact values are replaced by intervals to protect privacy: Case of t-tests. Departamental Technical Reports (CS), University of Texas at El Paso, p. 892 (2015)

    Google Scholar 

  13. Mann, H.B., Whitney, D.R.: On a test whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

    Article  MathSciNet  Google Scholar 

  14. Moore, R.E.: Automatic error analysis in digital computation. Technical Report Space Div. Report LMSD 84821. Lockheed Missiles and Space Co. (1959)

    Google Scholar 

  15. Nguyen, H.T., Kreinovich, V., Wu, B., Xiang, G.: Computing Statistics Under Interval and Fuzzy Uncertainty. Springer, Heidelberg (2012)

    Book  Google Scholar 

  16. Perolat, J., Couso, I., Loquin, K., Strauss, O.: Generalizing the Wilcoxon rank-sum test for interval data. Int. J. Approximate Reasoning 56, 108–121 (2015)

    Article  MathSciNet  Google Scholar 

  17. Sunaga, T.: Theory of interval algebra and its application to numerical analysis. RAAG Memoirs, Ggujutsu Bunken Fukuy-kai, vol. 2, no. 29–46, pp. 547–564 (1958)

    Google Scholar 

  18. Warmus, M.: Calculus of approximations. Bulletin de l’Academie Polonaise de Sciences 4, 253–257 (1956)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemyslaw Grzegorzewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grzegorzewski, P., Śpiewak, M. (2021). Two-Sample Median Test for Interval-Valued Data. In: Atanassov, K., et al. Uncertainty and Imprecision in Decision Making and Decision Support: New Challenges, Solutions and Perspectives. IWIFSGN 2018. Advances in Intelligent Systems and Computing, vol 1081. Springer, Cham. https://doi.org/10.1007/978-3-030-47024-1_13

Download citation

Publish with us

Policies and ethics