Abstract
The analysis of heart rate variability (HRV) is central for cardiac diagnostics, but the essential non-stationarity of heart rate has started to gain attention only recently. The aim of this work is to develop a set of special new techniques for calculating mathematical indicators of HRV spectral properties associated with non-stationarity in frequency. The analysis is done both for the new model of a tachogram taking into account frequency modulation and for the true tachogram record during head up tilt test. Continuous wavelet transformation of the frequency-modulated signal (CWT) has been derived in analytical form. The local frequency of heart rhythm giving the maximum of CWT has been determined. Treated as another non-stationary signal, this frequency has been subjected to CWT following double CWT procedure (DCWT). The special algorithm for eliminating boundary effects at the computing CWT is used. The transient periods for local frequency, the frequencies of local frequency fluctuation against the main trend and the periods of emergence and attenuation of such fluctuations have been defined by estimating the spectral integrals in the ranges {ULF, VLF, LF, HF}. The combined use of several new techniques taking into account the non-stationary character of heart rate can provide reliable diagnostic results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, New York (2008)
Cohen, A.: Numerical Analysis of Wavelet Method. Elsevier Science, North-Holland (2003)
Baleanu, D.: Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology (2012)
Chui, C.K., Jiang, O.: Applied Mathematics. Data Compression, Spectral Methods, Fourier Analysis, Wavelets and Applications. Mathematics Textbooks for Science and Engineering, vol. 2. Atlantis Press, Paris (2013)
Addison, P.S.: The Illustrated Wavelet Transform Handbook. Introductory Theory and Application in Science, Engineering, Medicine and Finance, 2nd edn. CRC Press, Boca Raton (2017)
Hramov, A.E., Koronovskii, A.A., Makarov, V.A., Pavlov, A.N., Sitnikova, E.: Wavelets in Neuroscience. SSS. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43850-3
Bozhokin, S.V.: Continuous wavelet transform and exactly solvable model of nonstationary signals. Tech. Phys. 57(7), 900–906 (2012)
Andreev, D.A., Bozhokin, S.V., Venevtsev, I.D., Zhunusov, K.T.: Gabor transform and continuous wavelet transform for model pulsed signals. Tech. Phys. 59(10), 1428–1433 (2014)
Bozhokin, S.V., Suslova, I.M.: Double wavelet transform of frequency-modulated nonstationary signal. Tech. Phys. 58(12), 1730–1736 (2013)
Bozhokin, S.V., Suslova, I.B.: Wavelet-based analysis of spectral rearrangements of EEG patterns and of non-stationary correlations. Phys. A 421, 151–160 (2015)
Bozhokin, S.V., Zharko, S.V., Larionov, N.V., Litvinov, A.N., Sokolov, I.M.: Wavelet correlation of nonstationary signals. Tech. Phys. 62(6), 837–845 (2017)
Tankanag, A.V., Chemeris, N.K.: Adaptive wavelet analysis of oscillations in the human peripherical blood flow. Biophysics 4(3), 375–380 (2009)
Podtaev, S., Morozov, M., Frick, P.: Wavelet-based corrections of skin temperature and blood flow oscillations. Cardiovasc. Eng. 8(3), 185–189 (2008)
Boltezar, M., Slavic, J.: Enhancements to the continuous wavelet transform for damping identification on short signals. Mech. Syst. Signal Process. 18, 1065–1076 (2004)
Ulker-Kaustell, M., Karoumi, R.: Application of the continuous wavelet transform on the free vibration of a steel-concrete composite railway bridge. Eng. Struct. 33, 911–919 (2011)
Cazelles, B., et al.: Wavelet analysis of ecological time series. Oecologia 156, 297–304 (2008)
Bozhokin, S., Suslova, I., Tarakanov, D.: Elimination of boundary effects at the numerical implementation of continuous wavelet transform to nonstationary biomedical signals. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), vol. 4, pp. 22–24. BIOSIGNALS, Prague, Czech-Republic (2019)
Baevskii, R.M., Ivanov, G.G., Chireikin, L.V., et al.: Analysis of heart rate variability using different cardiological systems: methodological recommendations. Vestnik Arrhythm. 24, 65–91 (2002)
Anderson, R., Jonsson, P., Sandsten, M.: Effects of age, BMI, anxiety and stress on the parameters of a stochastic model for heart rate variability including respiratory information. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018), vol. 4, pp. 17–25. BIOSIGNALS, Lisbon, Portugal (2018)
Bhavsar, R., Daveya, N., Sun, Y., Helian, N.: An investigation of how wavelet transform can affect the correlation performance of biomedical signals. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018), vol. 4, pp. 139–146. BIOSIGNALS, Lisbon, Portugal (2018)
Hammad, M., Maher, A., Adil, K., Jiang, F., Wang, K.: Detection of abnormal heart conditions from the analysis of ECG signals. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018), vol. 4, pp. 240–247. BIOSIGNALS, Lisbon, Portugal (2018)
Keissar, K., Davrath, L.R., Akselrod, S.: Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos. Trans. R. Soc. A. 367(1892), 1393–1406 (2009)
Ducla-Soares, J.L., Santos-Bento, M., Laranjo, S., et al.: Wavelet analysis of autonomic outflow of normal subjects on head-up tilt, cold pressor test, Valsalva manoeuvre and deep breathing. Exp. Physiol. 92(4), 677–686 (2007)
Bozhokin, S.V., Suslova, I.B.: Analysis of non-stationary HRV as a frequency modulated signal by double continuous wavelet transformation method. Biomed. Signal Process. Control 10, 34–40 (2014)
Van den Berg, J.C.: Wavelets in Physics. Cambridge University Press, Cambridge (2004)
Guidelines: Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17, 354–381 (1996)
Acknowledgments
The work has been supported by the Russian Science Foundation (Grant of the RSF 17-12-01085).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bozhokin, S., Suslova, I., Tarakanov, D. (2020). Special Techniques in Applying Continuous Wavelet Transform to Non-stationary Signals of Heart Rate Variability. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-46970-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46969-6
Online ISBN: 978-3-030-46970-2
eBook Packages: Computer ScienceComputer Science (R0)