Skip to main content

Smart Polysaccharide Hydrogels in Drug Delivery and Release

  • Chapter
  • First Online:
Advanced Biopolymeric Systems for Drug Delivery

Part of the book series: Advances in Material Research and Technology ((AMRT))

Abstract

Smart hydrogels having extreme biocompatibility and drug loading ability are used in drug release (DR) applications under external stimuli like ultrasound (US). For the smart medicine hydrogels used in US-triggered DR, hydrogel matrix has functionalities like non-toxicity and biocompatibility. In addition, the DR behavior can be controlled by US exposure. It is known that in cancer chemotherapy, protein and gene delivery, and tissue regeneration, such smart hydrogel medicine plays a vital role as drug carriers and release. The hydrogels fabricated from polysaccharides like cellulose and chitin, which retain high content of water and medicine in the polymeric networks, exhibit excellent bio- and cyto-compatibilities and are mainly introduced for DR. It is also reviewed that, from such medicine hydrogels, external stimulant promotes accelerated DR by stimuli like temperature, pH, and enzymes. Especially, US-stimulated DR by cellulose and chitin hydrogels are reviewed as smart polysaccharide hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATB:

Agave tequilana Weber bagasse

BSA:

Bovine serum albumin

CH:

Cellulose hydrogel

ChH:

Chitin hydrogel

DD:

Drug delivery

DMAc:

N,N–Dimethylacetamide

DMSO:

Dimethyl sulfoxide

DR:

Drug release

EtO:

HEthanol

H2SO4:

Sulfuric acid

HCl:

Hydrochloric acid

LiCl:

Lithium chloride

MCH:

Mimosa-loaded cellulose hydrogel

NaOCl:

Sodium hypochlorite

NaOH:

Sodium hydroxide

NMMO:

N‐methylmorpholine‐N‐oxide

RMSSR:

Root mean square surface roughness

SCB:

Sugarcane bagasse

SEM:

Scanning electron microscope

SPBM:

Surface scanning probe microscope

TBAF:

Tetrabutylammonium fluoride

WC:

Water content

References

  1. Jorfi, M., Foster, E.J.: Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, n/a-n/a (2015). https://doi.org/10.1002/app.41719

  2. Hirano, S., Noishiki, Y., Kinugawa, J., Higashijima, H., Hayashi, T.: Chitin and Chitosan for use as a novel biomedical material. In: Advances in Biomedical Polymers, pp. 285–297. Springer US, Boston, MA (1987)

    Google Scholar 

  3. Nakasone, K., Ikematsu, S., Kobayashi, T.: Biocompatibility evaluation of cellulose hydrogel film regenerated from sugar cane bagasse waste and its in vivo behavior in mice. Ind. Eng. Chem. Res. 55, (2016). https://doi.org/10.1021/acs.iecr.5b03926

    Article  CAS  Google Scholar 

  4. Tovar-carrillo, K.L., Sueyoshi, S.S., Tagaya, M., Kobayashi, T.: Fibroblast compatibility on scaffold hydrogels prepared from agave tequilana weber bagasse for tissue regeneration, 52, 11607–11613 (2013). https://doi.org/doi.org/10.1021/ie401793w

  5. Chang, C., Chen, S., Zhang, L.: Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J. Mater. Chem. 21, (2011). https://doi.org/10.1039/c0jm03075a

    Article  CAS  Google Scholar 

  6. Sannino, A., Demitri, C., Madaghiele, M.: Biodegradable cellulose-based hydrogels: design and applications (2009)

    Google Scholar 

  7. Tomšič, B., Simončič, B., Orel, B., Vilčnik, A., Spreizer, H.: Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydr. Polym. 69, (2007). https://doi.org/10.1016/j.carbpol.2007.01.003

    Article  CAS  Google Scholar 

  8. Nsereko, S., Amiji, M.: Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials 23, (2002). https://doi.org/10.1016/S0142-9612(02)00005-4

    Article  CAS  Google Scholar 

  9. Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., Minami, S., Okamoto, Y.: Chitin, chitosan, and its derivatives for wound healing: old and new materials. J. Funct. Biomater. 6, (2015). https://doi.org/10.3390/jfb6010104

    Article  CAS  Google Scholar 

  10. Chen, H.: Biotechnology of lignocellulose: theory and practice. In: Biotechnology of Lignocellulose: Theory and Practice, pp. 1–511. Chemical Industry Press, Beijing and Springer ScienceCBusiness Media Dordrecht, Beijing (2014)

    Google Scholar 

  11. Esa, F., Tasirin, S.M., Rahman, N.A.: Overview of bacterial cellulose production and application. Agric. Agric. Sci. Proc. 2, (2014). https://doi.org/10.1016/j.aaspro.2014.11.017

    Article  Google Scholar 

  12. Nakasone, K., Kobayashi, T.: Effect of pre-treatment of sugarcane bagasse on the cellulose solution and application for the cellulose hydrogel films. Polym. Adv. Technol. 27, (2016). https://doi.org/10.1002/pat.3757

    Article  CAS  Google Scholar 

  13. Rosa, S.M.L., Rehman, N., De Miranda, M.I.G., Nachtigall, S.M.B., Bica, C.I.D.: Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, (2012). https://doi.org/10.1016/j.carbpol.2011.08.084

    Article  CAS  Google Scholar 

  14. Rinaudo, M.: Chitin and chitosan: properties and applications (2006)

    Google Scholar 

  15. Fabritius, H., Sachs, C., Raabe, D., Nikolov, S., Friák, M., Neugebauer, J.: Chitin in the exoskeletons of arthropoda: from ancient design to novel materials science. In: Gupta, N.S. (ed.) Chitin. Topics in Geobiology, pp. 35–60. Springer, Dordrecht (2011)

    Google Scholar 

  16. Henar Valdivieso, M., Durán, A., Roncero, C.: Chitin synthases in yeast and fungi (1999). https://www.ncbi.nlm.nih.gov/pubmed/10906951

  17. Ifuku, S., Nomura, R., Morimoto, M., Saimoto, H.: Preparation of chitin nanofibers from mushrooms. Materials (Basel) 4, (2011). https://doi.org/10.3390/ma4081417

    Article  CAS  Google Scholar 

  18. Jiang, H., Tovar-Carrillo, K., Kobayashi, T.: Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix. Ultrason. Sonochem. 32, (2016). https://doi.org/10.1016/j.ultsonch.2016.04.008

    Article  CAS  Google Scholar 

  19. Jiang, H., Kobayashi, T.: Ultrasound stimulated release of gallic acid from chitin hydrogel matrix. Mater. Sci. Eng. C. 75, (2017). https://doi.org/10.1016/j.msec.2017.02.082

    Article  CAS  Google Scholar 

  20. Tovar-Carrillo, K.L., Tagaya, M., Kobayashi, T.: Bamboo fibers elaborating cellulose hydrogel films for medical applications. J. Mater. Sci. Chem. Eng. 01, (2013). https://doi.org/10.4236/msce.2013.17002

    Article  CAS  Google Scholar 

  21. Kobayashi, T., Tovar-Carrillo, K., Tagaya, M.: Bagasse sustainable polymers for cellulose hydrogel sheets showing tissue regeneration. In: Thakur, V.K. (ed.) Handbook of Sustainable Polymers Structure and Chemistry, pp. 717–736. Pan Stanford Publishing, Danvers, MA 01923 (2016)

    Google Scholar 

  22. Nguyen, K.D., Trang, T.T.C., Kobayashi, T.: Chitin-halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions. J. Appl. Polym. Sci. 136, (2018). https://doi.org/10.1002/app.47207

    Article  CAS  Google Scholar 

  23. Zhang, Y., Shao, H., Wu, C., Hu, X.: Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol. Biosci. 1, (2001)https://doi.org/10.1002/1616-5195(20010601)1:4<141::AID-MABI141>3.0.CO;2-J

    Article  CAS  Google Scholar 

  24. Dawsey, T.R., Mccormick, C.L.: The lithium chloride/dimethylacetamide solvent for cellulose: a literature review T. J. Macromol. Sci. Part C 30, (1990). https://doi.org/10.1080/07366579008050914

    Article  Google Scholar 

  25. Östlund, Å., Lundberg, D., Nordstierna, L., Holmberg, K., Nydén, M.: Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromol 10, (2009). https://doi.org/10.1021/bm900667q

    Article  CAS  Google Scholar 

  26. Cai, J., Zhang, L.: Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromol 7, (2006). https://doi.org/10.1021/bm0505585

    Article  CAS  Google Scholar 

  27. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, (2002). https://doi.org/10.1021/ja025790m

    Article  CAS  Google Scholar 

  28. Tovar-Carrillo, K.L., Nakasone, K., Sugita, S., Tagaya, M., Kobayashi, T.: Effects of sodium hypochlorite on Agave tequilana Weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films. Mater. Sci. Eng. C 42, (2014). https://doi.org/10.1016/j.msec.2014.06.023

    Article  CAS  Google Scholar 

  29. Sjöholm, E., Gustafsson, K., Eriksson, B., Brown, W., Colmsjö, A.: Aggregation of cellulose in lithium chloride/N N-dimethylacetamide. Carbohydr. Polym. 41, (2000). https://doi.org/10.1016/S0144-8617(99)00080-6

    Article  Google Scholar 

  30. Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.: In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. Part A 76A, 431–438 (2006). https://doi.org/10.1002/jbm.a.30570

  31. Rejinold, N.S., Nair, A., Sabitha, M., Chennazhi, K.P., Tamura, H., Nair, S.V., Jayakumar, R.: Synthesis, characterization and in vitro cytocompatibility studies of chitin nanogels for biomedical applications. Carbohydr. Polym. 87, (2012). https://doi.org/10.1016/j.carbpol.2011.08.044

    Article  CAS  Google Scholar 

  32. Kumar, P.T.S., Srinivasan, S., Lakshmanan, V.K., Tamura, H., Nair, S.V., Jayakumar, R.: Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Int. J. Biol. Macromol. 49, (2011). https://doi.org/10.1016/j.ijbiomac.2011.03.006

    Article  CAS  Google Scholar 

  33. Tovar-Carrillo, K.L., Tagaya, M., Kobayashi, T.: Biohydrogels interpenetrated with hydroxyethyl cellulose and wooden pulp for biocompatible materials. Ind. Eng. Chem. Res. 53, (2014). https://doi.org/10.1021/ie403257a

    Article  CAS  Google Scholar 

  34. Rodríguez, R., Alvarez-Lorenzo, C., Concheiro, A.: Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J. Control Rel. 86, (2003). https://doi.org/10.1016/S0168-3659(02)00410-8

    Article  Google Scholar 

  35. Mohd Amin, M.C.I., Ahmad, N., Halib, N., Ahmad, I.: Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr. Polym. 88, 465–473 (2012). https://doi.org/10.1016/j.carbpol.2011.12.022

  36. Rejinold N.S., Chennazhi, K.P., Tamura, H., Nair, S.V., Rangasamy, J.: Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing. ACS Appl. Mater. Interf. 3, 3654–3665 (2011). https://doi.org/10.1021/am200844m

  37. Marani, P.L., Bloisi, G.D., Petri, D.F.S.: Hydroxypropylmethyl cellulose films crosslinked with citric acid for control release of nicotine. Cellulose 22, (2015). https://doi.org/10.1007/s10570-015-0757-1

    Article  CAS  Google Scholar 

  38. Hezaveh, H., Muhamad, I.I.: Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chem. Eng. Res. Des. 91, (2013). https://doi.org/10.1016/j.cherd.2012.08.014

    Article  CAS  Google Scholar 

  39. Pandey, M., Mohd Amin, M.C.I., Ahmad, N., Abeer, M.M.: Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int. J. Polym. Sci. 2013, 10 (2013). https://doi.org/10.1155/2013/905471

  40. Ooi, S.Y., Ahmad, I., Amin, M.C.I.M.: Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind. Crops Prod. 93, (2016). https://doi.org/10.1016/j.indcrop.2015.11.082

    Article  CAS  Google Scholar 

  41. Jeong, D., Joo, S.W., Hu, Y., Shinde, V.V., Cho, E., Jung, S.: Carboxymethyl cellulose-based superabsorbent hydrogels containing carboxymehtyl β-cyclodextrin for enhanced mechanical strength and effective drug delivery. Eur. Polym. J. 105, (2018). https://doi.org/10.1016/j.eurpolymj.2018.05.023

    Article  CAS  Google Scholar 

  42. Chang, C., Duan, B., Cai, J., Zhang, L.: Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 46, (2010). https://doi.org/10.1016/j.eurpolymj.2009.04.033

    Article  CAS  Google Scholar 

  43. Mi, F.L., Shyu, S.S., Lin, Y.M., Wu, Y.B., Peng, C.K., Tsai, Y.H.: Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials 24, (2003). https://doi.org/10.1016/S0142-9612(03)00413-7

    Article  CAS  Google Scholar 

  44. Iresha, H., Kobayashi, T.: Cellulose and chitin hydrogels as drug carriers in ultrasound-stimulated nicotine release system. In: Proceeding of the 27th Annual Meeting of the Japan Society of Sonochemistry, pp. 76–77. The Japan Society of Sonochemistry, Tokyo (2018)

    Google Scholar 

  45. Mi, F.L., Sung, H.W., Shyu, S.S.: Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr. Polym. 48, (2002). https://doi.org/10.1016/S0144-8617(01)00212-0

    Article  CAS  Google Scholar 

  46. El-Sherbiny, I.M., Smyth, H.D.C.: Poly(ethylene glycol)-carboxymethyl chitosan-based pH-responsive hydrogels: photo-induced synthesis, characterization, swelling, and in vitro evaluation as potential drug carriers. Carbohydr. Res. 345, (2010). https://doi.org/10.1016/j.carres.2010.07.026

    Article  CAS  Google Scholar 

  47. Guo, B.L., Gao, Q.Y.: Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydr. Res. 342, (2007). https://doi.org/10.1016/j.carres.2007.07.007

    Article  CAS  Google Scholar 

  48. Tan, J., Kang, H., Liu, R., Wang, D., Jin, X., Li, Q., Huang, Y.: Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym. Chem. 2, (2011). https://doi.org/10.1039/c0py00348d

    Article  CAS  Google Scholar 

  49. Shi, X., Zheng, Y., Wang, G., Lin, Q., Fan, J.: PH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv. 4, (2014). https://doi.org/10.1039/c4ra09640a

    Article  CAS  Google Scholar 

  50. Lammoglia-Ordiales, L., Vega-Memije, M.E., Herrera-Arellano, A., Rivera-Arce, E., Agüero, J., Vargas-Martinez, F., Contreras-Ruiz, J.: A randomised comparative trial on the use of a hydrogel with tepescohuite extract (Mimosa tenuiflora cortex extract-2G) in the treatment of venous leg ulcers. Int. Wound J. 9, (2012). https://doi.org/10.1111/j.1742-481X.2011.00900.x

    Article  Google Scholar 

  51. da Rosa, C.G., Borges, C.D., Zambiazi, R.C., Nunes, M.R., Benvenutti, E.V., da Luz, S.R., D’Avila, R.F., Rutz, J.K.: Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan. Ind. Crops Prod. 46, (2013). https://doi.org/10.1016/j.indcrop.2012.12.053

    Article  CAS  Google Scholar 

  52. Noda, I.: Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 47, (1993). https://doi.org/10.1366/0003702934067694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaomi Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iresha, H., Kobayashi, T. (2020). Smart Polysaccharide Hydrogels in Drug Delivery and Release. In: Nayak, A., Hasnain, M. (eds) Advanced Biopolymeric Systems for Drug Delivery. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46923-8_6

Download citation

Publish with us

Policies and ethics