Skip to main content

Stimuli-Responsive Polymeric Systems for Smart Drug Delivery

  • Chapter
  • First Online:
Advanced Biopolymeric Systems for Drug Delivery

Abstract

This chapter provides a general description of smart drug delivery systems (DDSs) based on the use of stimuli-responsive polymers. Smart DDSs have the distinctiveness of carrying out the release of therapeutics at the target sites in a spatially controlled manner. This means that the drug is released with suitable speeds exclusively at the site of action. Specifically, smart DDSs ensure that the drug is not freely extravagate during blood circulation, and only released at specific sites (organs/tissues) where these nanocarriers accumulate through an active or passive targeting strategy. Various polymers-based nanomaterials offer new opportunities for the preparation of smart DDSs due to their unique nanoscale properties and specific bio-functions. In this way, there is a special type of polymers called ‘stimuli-responsive’, ‘intelligent’, ‘smart’ or ‘environmental-sensitive’ polymers, because they have the particularity of responding to small physical or chemical stimuli leading to a macroscopic alteration in their structure/properties. The basis of the different stimulus-sensitive polymers used in the preparation of intelligent DDSs will be presented in the different sections of this chapter taking into account the stimulus that trigger polymer alteration and their specific applications in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duro-Castano, A., Talelli, M., Rodríguez-Escalona, G., Vicent, M.J.: Smart polymeric nanocarriers for drug delivery. In: Smart Polymers and their Applications, 2nd edn., pp. 439–479. Valencia, Spain, Elsevier Ltd. (2019)

    Google Scholar 

  2. Bregoli, L., Movia, D., Gavigan-Imedio, J.D., Lysaght, J., Reynolds, J., Prina-Mello, A.: Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed. Nanotechnol. Biol. Med. 12(1), 81–103 (2016)

    CAS  Google Scholar 

  3. Mazur, J., Roy, K., Kanwar, J.R.: Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine 13(1), 105–137 (2018)

    CAS  Google Scholar 

  4. Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J., Corrie, S.R.: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016)

    CAS  Google Scholar 

  5. Hoffman, A.S.: Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 65(1), 10–16 (2013)

    CAS  Google Scholar 

  6. Matalanis, A., Jones, O.G., McClements, D.J.: Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 25(8), 1865–1880 (2011)

    CAS  Google Scholar 

  7. Hoogenboom, R.: Temperature-responsive polymers: properties, synthesis, and applications. In: Smart Polymers and their Applications, 2nd edn., pp. 13–44. Elsevier Ltd. (2019)

    Google Scholar 

  8. Guo, X., et al.: Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl. Mater. Interf. 6, 8549–8559 (2014)

    CAS  Google Scholar 

  9. Karimi, M., et al.: Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl. Mater. Interf. 8, 21107–21133 (2016)

    CAS  Google Scholar 

  10. Tsintou, M., Wang, C., Dalamagkas, K., Weng, D., Zhang, Y.N., Niu, W.: Nanogels for Biomedical Applications: Drug Delivery, Imaging, Tissue Engineering, and Biosensors. Elsevier Ltd. (2017)

    Google Scholar 

  11. Qiao, S.-L., Wang, H.: Thermoresponsive polymeric assemblies and their biological applications. In: In Vivo Self-Assembly Nanotechnology for Biomedical Applications, pp. 155–183. Springer, Singapore (2018)

    Google Scholar 

  12. Hajebi, S., et al.: Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 92, 1–18 (2019)

    CAS  Google Scholar 

  13. Bergueiro, J., Calderón, M.: Thermoresponsive nanodevices in biomedical applications. Macromol. Biosci. 15, 183–199 (2015)

    CAS  Google Scholar 

  14. Vancoillie, G., Frank, D., Hoogenboom, R.: Thermoresponsive poly(oligo ethylene glycol acrylates). Prog. Polym. Sci. 39, 1074–1095 (2014)

    CAS  Google Scholar 

  15. Gandhi, A., Paul, A., Sen, S.O., Sen, K.K.: Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J. Pharm. Sci. 10, 99–107 (2015)

    Google Scholar 

  16. Zhang, Q., Weber, C., Schubert, U.S., Hoogenboom, R.: Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horizons 4(2), 109–116 (2017)

    CAS  Google Scholar 

  17. Weber, C., Hoogenboom, R., Schubert, U.S.: Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Program. Polym. Sci. 37(5), 686–714 (2012)

    CAS  Google Scholar 

  18. Lutz, J.F., Weichenhan, K., Akdemir, Ö., Hoth, A.: About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 40, 2503–2508 (2007)

    CAS  Google Scholar 

  19. Simpson, M.J., Corbett, B., Arezina, A., Hoare, T.: Narrowly Dispersed, degradable, and scalable poly(oligoethylene glycol methacrylate)-based nanogels via thermal self-assembly. Ind. Eng. Chem. Res. 57, 7495–7506 (2018)

    CAS  Google Scholar 

  20. Hoogenboom, R., Thijs, H.M.L., Jochems, M.J.H.C., Van Lankvelt, B.M., Fijten, M.W.M., Schubert, U.S.: Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem. Commun., 5758–5760 (2008)

    Google Scholar 

  21. Ramos, J., et al.: Soft nanoparticles (thermo-responsive nanogels and bicelles) with biotechnological applications: From synthesis to simulation through colloidal characterization. Soft Matter 7, 5067–5082 (2011)

    CAS  Google Scholar 

  22. Ramos, J., Imaz, A., Forcada, J.: Temperature-sensitive nanogels: Poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym. Chem. 3, 852–856 (2012)

    CAS  Google Scholar 

  23. Cortez-Lemus, N.A., Licea-Claverie, A.: Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Program. Polym. Sci. 53, 1–51 (2016)

    CAS  Google Scholar 

  24. Badi, N., Lutz, J.F.: PEG-based thermogels: Applicability in physiological media. J. Control. Rel. 140, 224–229 (2009)

    CAS  Google Scholar 

  25. Lutz, J.F., Akdemir, Ö., Hoth, A.: Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J. Am. Chem. Soc. 128, 13046–13047 (2006)

    CAS  Google Scholar 

  26. Lutz, J.F.: Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J. Polym. Sci. Part A Polym. Chem. 46, 3459–3470 (2008)

    CAS  Google Scholar 

  27. Lutz, J.F., Hoth, A.: Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39(2), 893–896 (2006)

    CAS  Google Scholar 

  28. Hou, L., Wu, P.: Microgels with linear thermosensitivity in a wide temperature range. Macromolecules 49(16), 6095–6100 (2016)

    CAS  Google Scholar 

  29. Seuring, J., Agarwal, S.: Polymers with upper critical solution temperature in aqueous solution: unexpected properties from known building blocks. ACS Macro Lett. 2, 597–600 (2013)

    CAS  Google Scholar 

  30. Gao, S., et al.: Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 7(5), 709–729 (2019)

    CAS  Google Scholar 

  31. Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013)

    CAS  Google Scholar 

  32. Alatorre-Meda, M., Alvarez-Lorenzo, C., Concheiro, A., Taboada, P.: UV and Near-IR Triggered Release from Polymeric Micelles and Nanoparticles. 1(1) (2013)

    Google Scholar 

  33. Zhao, H., Sterner, E.S., Coughlin, E.B., Theato, P.: O-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45(4), 1723–1736 (2012)

    CAS  Google Scholar 

  34. Alvarez-Lorenzo, C., Concheiro, A.: Smart drug delivery systems: from fundamentals to the clinic. Chem. Commun. 50(58), 7743–7765 (2014)

    CAS  Google Scholar 

  35. Molina, M., Wedepohl, S., Calderón, M.: Polymeric near-infrared absorbing dendritic nanogels for efficient in vivo photothermal cancer therapy. Nanoscale 8(11), 5852–5856 (2016)

    CAS  Google Scholar 

  36. Shim, G., et al.: Light-switchable systems for remotely controlled drug delivery. J. Control. Rel. 267, 67–79 (2017)

    CAS  Google Scholar 

  37. Knežević, N.Ž., Trewyn, B.G., Lin, V.S.Y.: Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem. Commun. 47(10), 2817–2819 (2011)

    Google Scholar 

  38. Gary-Bobo, M., et al.: Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew. Chemie. Int. Ed. 50(48), 11425–11429 (2011)

    CAS  Google Scholar 

  39. Guo, L., et al.: Versatile polymer nanoparticles as two-photon-triggered photosensitizers for simultaneous cellular, deep-tissue imaging, and photodynamic therapy. Adv. Healthc. Mater. 6(12), 1–10 (2017)

    Google Scholar 

  40. Akhavan, O., Ghaderi, E., Rahighi, R., Abdolahad, M.: Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon N. Y. 79(1), 654–663 (2014)

    CAS  Google Scholar 

  41. Feng, G., Fang, Y., Liu, J., Geng, J., Ding, D., Liu, B.: Multifunctional conjugated polymer nanoparticles for image-guided photodynamic and photothermal therapy. Small 13(3), 1–12 (2017)

    Google Scholar 

  42. Kim, E., Lee, K., Huh, Y.M., Haam, S.: Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy. J. Mater. Chem. B 1(6), 729–739 (2013)

    CAS  Google Scholar 

  43. Karimi, M., et al.: Smart Micro/Nanoparticles in Stimulus-Responsive Drug/Gene Delivery Systems, vol. 45, no. 5. Royal Society of Chemistry (2016)

    Google Scholar 

  44. Wust, P., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002)

    CAS  Google Scholar 

  45. Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J.: The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed. Nanotechnol. Biol. Med. 9(1), 1–14 (2013)

    CAS  Google Scholar 

  46. Macchione, M.A., Biglione, C., Strumia, M.: Design, synthesis and architectures of hybrid nanomaterials for therapy and diagnosis applications. Polym. (Basel) 10(5), 1–34 (2018)

    Google Scholar 

  47. Louguet, S., et al.: Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polym. Chem. 3(6), 1408–1417 (2012)

    CAS  Google Scholar 

  48. Thirunavukkarasu, G.K., Cherukula, K., Lee, H., Jeong, Y.Y., Park, I.K., Lee, J.Y.: Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy. Biomaterials 180, 240–252 (2018)

    CAS  Google Scholar 

  49. Lim, H.L., Hwang, Y., Kar, M., Varghese, S.: Smart hydrogels as functional biomimetic systems. Biomater. Sci. 2(5), 603–618 (2014)

    CAS  Google Scholar 

  50. Liu, Y., Wang, W., Yang, J., Zhou, C., Sun, J.: pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J. Pharm. Sci. 8(3), 159–167 (2013)

    Google Scholar 

  51. Pang, X., Jiang, Y., Xiao, Q., Leung, A.W., Hua, H., Xu, C.: pH-responsive polymer-drug conjugates: design and progress. J. Control. Rel. 222, 116–129 (2016)

    CAS  Google Scholar 

  52. Bae, Y., Jang, W.D., Nishiyama, N., Fukushima, S., Kataoka, K.: Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst. 1(3), 242–250 (2005)

    CAS  Google Scholar 

  53. Montero, A., Valencia, L., Corrales, R., Jorcano, J.L., Velasco, D.: Smart polymer gels: properties, synthesis, and applications. In: Smart Polymers and their Applications, 2nd edn., pp. 279–321. Madrid, Spain 9.1, Elsevier Ltd., (2019)

    Google Scholar 

  54. Kushwaha, S., Rai, A., Saxena, P.: Stimuli sensitive hydrogels for ophthalmic drug delivery: a review. Int. J. Pharm. Invest. 2(2), 54 (2012)

    CAS  Google Scholar 

  55. Dolatabadi-Farahani, T., Vasheghani-Farahani, E., Mirzadeh, H.: Swelling behaviour of alginate-N, O-carboxymethyl chitosan gel beads coated by chitosan. Iran. Polym. J. 15(5), 405–415 (2006) (English edn.)

    Google Scholar 

  56. Aon, M.A., Cortassa, S., O’Rourke, B.: Redox-optimized ROS balance: a unifying hypothesis. Biochim. Biophys. Acta Bioenergy 1797(6–7), 865–877 (2010)

    CAS  Google Scholar 

  57. Tian, Y., et al.: Redox-responsive nanogel with intracellular reconstruction and programmable drug release for targeted tumor therapy. Macromol. Rapid Commun. 40(8), 1–6 (2019)

    Google Scholar 

  58. Verma, S., et al.: Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367(19), 1783–1791 (2012)

    CAS  Google Scholar 

  59. Cheng, R., Meng, F., Deng, C., Zhong, Z.: Reduction-sensitive nanosystems for active intracellular drug delivery. RSC Smart Mater. 1(1), 208–231 (2013)

    Google Scholar 

  60. Bai, S., et al.: Smart unimolecular micelle-based polyprodrug with dual-redox stimuli response for tumor microenvironment: enhanced in vivo delivery efficiency and tumor penetration. ACS Appl. Mater. Interf. 11(39), 36130–36140 (2019)

    CAS  Google Scholar 

  61. Kurtoglu, Y.E., Navath, R.S., Wang, B., Kannan, S., Romero, R., Kannan, R.M.: Poly(amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials 30(11), 2112–2121 (2009)

    CAS  Google Scholar 

  62. Maiti, C., Parida, S., Kayal, S., Maiti, S., Mandal, M., Dhara, D.: Redox-responsive core-cross-linked block copolymer micelles for overcoming multidrug resistance in cancer cells. ACS Appl. Mater. Interf. 10(6), 5318–5330 (2018)

    CAS  Google Scholar 

  63. Wang, L., et al.: A shell-crosslinked polymeric micelle system for pH/redox dual stimuli-triggered DOX on-demand release and enhanced antitumor activity. Colloids Surf. B Biointerf. 152, 1–11 (2017)

    Google Scholar 

  64. Yuan, F., Li, J.L., Cheng, H., Zeng, X., Zhang, X.Z.: A redox-responsive mesoporous silica based nanoplatform for: in vitro tumor-specific fluorescence imaging and enhanced photodynamic therapy. Biomater. Sci. 6(1), 96–100 (2018)

    CAS  Google Scholar 

  65. Chi, Y., et al.: Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J. Control. Rel. 261, 113–125 (2017)

    CAS  Google Scholar 

  66. Hu, Q., Katti, P.S., Gu, Z.: Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6(21), 12273–12286 (2014)

    CAS  Google Scholar 

  67. Callmann, C.E., Barback, C.V., Thompson, M.P., Hall, D.J., Mattrey, R.F., Gianneschi, N.C.: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors. Adv. Mater. 27(31), 4611–4615 (2015)

    CAS  Google Scholar 

  68. Raza, A., Rasheed, T., Nabeel, F., Hayat, U., Bilal, M., Iqbal, H.M.N.: Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules, 1–21 (2019)

    Google Scholar 

  69. Koetting, M.C., Peters, J.T., Steichen, S.D., Peppas, N.A.: Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R Rep. 93, 1–49 (2015)

    Google Scholar 

  70. Radhakrishnan, K., Tripathy, J., Gnanadhas, D.P., Chakravortty, D., Raichur, A.M.: Dual enzyme responsive and targeted nanocapsules for intracellular delivery of anticancer agents. RSC Adv. 4(86), 45961–45968 (2014)

    CAS  Google Scholar 

  71. Miyata, T., Asami, N., Uragami, T.: Preparation of an antigen-sensitive hydrogel using antigen-antibody bindings. Macromolecules 32(6), 2082–2084 (1999)

    CAS  Google Scholar 

  72. Lu, Z.R., Kopečkovci, P., Kopeček, J.: Antigen responsive hydrogels based on polymerizable antibody Fab′ fragment. Macromol. Biosci. 3(6), 296–300 (2003)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by FONCYT (PICT-2015-2477), CONICET (11220150100344CO) and SECYT-UNC (30720150100698CB, 30920150100233CB and 30720150100225CB). Dariana Aristizabal Bedoya, Francisco Figueroa and Micaela A. Macchione, thank CONICET for the fellowship awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam C. Strumia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bedoya, D.A., Figueroa, F.N., Macchione, M.A., Strumia, M.C. (2020). Stimuli-Responsive Polymeric Systems for Smart Drug Delivery. In: Nayak, A., Hasnain, M. (eds) Advanced Biopolymeric Systems for Drug Delivery. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46923-8_5

Download citation

Publish with us

Policies and ethics