Abstract
Liposomes are sphere-shaped vesicles consisting of one or more phospholipid bilayers. The liposomal drug delivery systems were utilized for delivery of compounds for different diseases. These systems improve the stability as well as cellular uptake of drugs. Site-specific delivery to the target site reduced the site effects. This chapter summarizes the recent advances in liposomal drug delivery systems (i) therapeutic applications-based chemotherapy; (ii) chemotherapy in combination to gene therapy and immunotherapy; (iii) theranostic applications for precise detection and simultaneous treatment of critical diseases and heavy metal toxicity; (iv) stimuli-triggered liposomes. This chapter gives a detailed account on aforementioned applications which might be beneficial to pharmaceutical scientists and industries to develop safe and effective liposomal systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lila, A.S.A., Ishida, T.: Liposomal delivery systems: design optimization and current applications. Biol. Pharm. Bull. 40(1), 1–10 (2017)
da Cruz, M.T.G., Simões, S., Pires, P.P., Nir, S., de Lima, M.C.P.: Kinetic analysis of the initial steps involved in lipoplex–cell interactions: effect of various factors that influence transfection activity. Biochim. Biophys. Acta (BBA) Biomembr. 1510(1–2), 136–151 (2001)
Chen, W.C., Huang, L.: Non-viral vector as vaccine carrier. Adv. Genet. 54, 315–337 (2005)
Zangabad, P.S., Mirkiani, S., Shahsavari, S., Masoudi, B., Masroor, M., Hamed, H., Jafari, Z., Taghipour, Y.D., Hashemi, H., Karimi, M.: Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev. 7(1), 95–122 (2018)
Jain, A., Jain, S.K.: In vitro release kinetics model fitting of liposomes: an insight. Chem. Phys. Lipids 201, 28–40 (2016). https://doi.org/10.1016/j.chemphyslip.2016.10.005
Xing, H., Hwang, K., Lu, Y.: Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 6(9), 1336 (2016)
Jain, A., Hurkat, P., Jain, S.K.: Development of liposomes using formulation by design: basics to recent advances. Chem. Phys. Lipids 224, 104764 (2019). https://doi.org/10.1016/j.chemphyslip.2019.03.017
Matsos, A., Johnston, I.: Chemotherapy-induced cognitive impairments: a systematic review of the animal literature. Neurosci. Biobehav. Rev. (2019)
McKnight, J.A.: Principles of chemotherapy. Clin. Tech. Small Anim. Pract. 18(2), 67–72 (2003)
Argyriou, A.A., Assimakopoulos, K., Iconomou, G., Giannakopoulou, F., Kalofonos, H.P.: Either called “chemobrain” or “chemofog”, the long-term chemotherapy-induced cognitive decline in cancer survivors is real. J. Pain Symptom Manage. 41(1), 126–139 (2011)
Mehrling, T.: Chemotherapy is getting ‘smarter’. Future Oncol. 11(4), 549–552 (2015)
Jain, A., Jain, S.K.: Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev. Ind. Pharm. 42(1), 136–149 (2016). https://doi.org/10.3109/03639045.2015.1036066
Jain, A., Tiwari, A., Verma, A., Jain, S.K.: Vitamins for cancer prevention and treatment: an insight. Curr. Mol. Med. 17(5), 321–340 (2017). https://doi.org/10.2174/1566524018666171205113329
Prajapati, S.K., Jain, A., Shrivastava, C., Jain, A.K.: Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol. 123, 691–703 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.116
Handali, S., Moghimipour, E., Rezaei, M., Ramezani, Z., Kouchak, M., Amini, M., Angali, K.A., Saremy, S., Dorkoosh, F.A.: A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed. Pharmacother. 108, 1259–1273 (2018)
Tiwari, A., Saraf, S., Jain, A., Panda, P.K., Verma, A., Jain, S.K.: Basics to advances in nanotherapy of colorectal cancer. Drug Deliv. Transl. Res. 1–20 (2019)
Ben, M.S., Marina, K., Mukund, G.S.: Eudragit S-100 encapsulated chitosan coated liposomes containing prednisolone for colon targeting: in vitro, ex vivo and in vivo evaluation. J. Young Pharm. 11(1) (2019)
Ramadass, S.K., Anantharaman, N.V., Subramanian, S., Sivasubramanian, S., Madhan, B.: Paclitaxel/epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids Surf. B Biointerfaces 125, 65–72 (2015)
de Oliveira Silva, J., Fernandes, R.S., Oda, C.M.R., Ferreira, T.H., Botelho, A.F.M., Melo, M.M., de Miranda, M.C., Gomes, D.A., Cassali, G.D., Townsend, D.M.: Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother. 118, 109323 (2019)
Patil, Y., Shmeeda, H., Amitay, Y., Ohana, P., Kumar, S., Gabizon, A.: Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomed. Nanotechnol. Biol. Med. 14(4), 1407–1416 (2018)
Peres-Filho, M.J., dos Santos, A.P., Nascimento, T.L., de Ávila, R.I., Ferreira, F.S., Valadares, M.C., Lima, E.M.: Antiproliferative activity and VEGF expression reduction in MCF7 and PC-3 cancer cells by paclitaxel and imatinib co-encapsulation in folate-targeted liposomes. AAPS PharmSciTech 19(1), 201–212 (2018)
Panda, P.K., Saraf, S., Tiwari, A., Verma, A., Raikwar, S., Jain, A., Jain, S.K.: Novel strategies for targeting prostate cancer. Curr. Drug Deliv. (2019). https://doi.org/10.2174/1567201816666190821143805
Jain, A., Jain, S.K.: Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit. Rev. Ther. Drug Carrier Syst. 32(2), 149–180 (2015). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2015010903
Jain, A., Jain, S.K.: Brain targeting using surface functionalized nanocarriers in human solid tumors. In: Singh, B., Jain, N.K., Katare, O.P. (ed.) Drug Nanocarriers. Series Nanobiomedicine, pp. 203–255. Series Nanobiomedicine Studium Press, Houston LLC, USA (2014). Series ISBN: 1-62699-050-6
Lakkadwala, S., Singh, J.: Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf. B Biointerfaces 173, 27–35 (2019)
Li, M., Shi, K., Tang, X., Wei, J., Cun, X., Chen, X., Yu, Q., Zhang, Z., He, Q.: pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur. J. Pharm. Sci. 124, 240–248 (2018)
Zhang, C., Zhang, S., Zhi, D., Zhao, Y., Cui, S., Cui, J.: Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloids Surf. Physicochem. Eng. Aspects 124054 (2019)
Ma, J., Zhuang, H., Zhuang, Z., Lu, Y., Xia, R., Gan, L., Wu, Y.: Development of docetaxel liposome surface modified with CD133 aptamers for lung cancer targeting. Artif. Cells Nanomed. Biotechnol. 46(8), 1864–1871 (2018)
Nkanga, C.I., Walker, R.B., Krause, R.W.: pH-Dependent release of isoniazid from isonicotinic acid (4-hydroxy-benzylidene)-hydrazide loaded liposomes. J. Drug Deliv. Sci. Technol. 45, 264–271 (2018)
Alomrani, A.H., Shazly, G.A., Amara, A.A., Badran, M.M.: Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: in vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf. B Biointerfaces 121, 74–81 (2014)
Verma, I.M., Naldini, L., Kafri, T., Miyoshi, H., Takahashi, M., Blömer, U., Somia, N., Wang, L., Gage, F.: Gene therapy: promises, problems and prospects. In: Genes and Resistance to Disease, pp. 147–157. Springer, Berlin (2000)
Cross, D., Burmester, J.K.: Gene therapy for cancer treatment: past, present and future. Clin. Med. Res. 4(3), 218–227 (2006)
Jain, A., Tiwari, A., Verma, A., Saraf, S., Sanjay Kumar, J.: Combination cancer therapy using multifunctional liposomes. Crit. Rev. Ther. Drug Carrier Syst. (2019)
Jain, A., Gulbake, A., Jain, A., Shilpi, S., Hurkat, P., Jain, S.K.: Dual drug delivery using “smart” liposomes for triggered release of anticancer agents. J. Nanopart. Res. 15(7), 1772 (2013)
Sun, W., Wang, Y., Cai, M., Lin, L., Chen, X., Cao, Z., Zhu, K., Shuai, X.: Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy. Biomater. Sci. 5(12), 2468–2479 (2017)
Yao, Y., Wang, T., Liu, Y., Zhang, N.: Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol. 47(1), 1374–1383 (2019)
Zuo, J., Jiang, Y., Zhang, E., Chen, Y., Liang, Z., Zhu, J., Zhao, Y., Xu, H., Liu, G., Liu, J.: Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sci. 227, 145–152 (2019)
Bi, Y., Lee, R.J., Wang, X., Sun, Y., Wang, M., Li, L., Li, C., Xie, J., Teng, L.: Liposomal codelivery of an SN38 prodrug and a survivin siRNA for tumor therapy. Int. J. Nanomed. 13, 5811 (2018)
Yan, H., Guo, W., Li, K., Tang, M., Zhao, X., Lei, Y., Nie, C.-L., Yuan, Z.: Combination of DESI2 and endostatin gene therapy significantly improves antitumor efficacy by accumulating DNA lesions, inducing apoptosis and inhibiting angiogenesis. Exp. Cell Res. 371(1), 50–62 (2018)
Duan, X., Mu, M., Yan, J., Bai, L., Zhong, L., Zhu, Y., Pan, H., Zhang, M., Shi, J.: Co-delivery of Aurora-A inhibitor XY-4 and Bcl-xl siRNA enhances antitumor efficacy for melanoma therapy. Int. J. Nanomed. 13, 1443 (2018)
Jain, A., Jain, S.K.: P-gp inhibitors: a potential tool to overcome drug resistance in cancer chemotherapy. In: Nanomedicine and Tissue Engineering: State of the Art and Recent Trends, p. 247 (2016)
Xu, W.-W., Liu, D.-Y., Cao, Y.-C., Wang, X.-Y.: GE11 peptide-conjugated nanoliposomes to enhance the combinational therapeutic efficacy of docetaxel and siRNA in laryngeal cancers. Int. J. Nanomed. 12, 6461 (2017)
Xu, L., Zhang, W., Park, H.-B., Kwak, M., Oh, J., Lee, P.C., Jin, J.-O.: Indocyanine green and poly I:C containing thermo-responsive liposomes used in immune-photothermal therapy prevent cancer growth and metastasis. J. Immunother. Cancer 7(1), 1–14 (2019)
Yang, X., Zhao, J., Duan, S., Hou, X., Li, X., Hu, Z., Tang, Z., Mo, F., Lu, X.: Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers. Theranostics 9(14), 4066 (2019)
Yang, Z.-Z., Gao, W., Liu, Y.-J., Pang, N., Qi, X.-R.: Delivering siRNA and chemotherapeutic molecules across BBB and BTB for intracranial glioblastoma therapy. Mol. Pharm. 14(4), 1012–1022 (2017)
Abu Lila, A.S., Kato, C., Fukushima, M., Huang, C.-L., Wada, H., Ishida, T.: Downregulation of thymidylate synthase by RNAi molecules enhances the antitumor effect of pemetrexed in an orthotopic malignant mesothelioma xenograft mouse model. Int. J. Oncol. 48(4), 1399–1407 (2016)
Daniela Di Paolo, D.Y., Pastorino, F., Emionite, L., Cilli, M., Daga, A., Destefanis, E., Di Fiore, A., Piaggio, F., Brignole, C., Xu, X.: New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK. Oncotarget 6(30), 28774 (2015)
Li, Y., Liu, R., Yang, J., Ma, G., Zhang, Z., Zhang, X.: Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy. Biomaterials 35(36), 9731–9745 (2014)
Castro, R., de Amorim, I., Pereira, R., Silva, S., Pinheiro, L., Pinto, A., Azevedo, E., Demicheli, C., Caliari, M., Mosser, D.: Hepatic fibropoiesis in dogs naturally infected with Leishmania (Leishmania) infantum treated with liposome-encapsulated meglumine antimoniate and allopurinol. Vet. Parasitol. 250, 22–29 (2018)
Bender, H., Noyes, N., Annis, J.L., Hitpas, A., Mollnow, L., Croak, K., Kane, S., Wagner, K., Dow, S., Zabel, M.: PrPC knockdown by liposome-siRNA-peptide complexes (LSPCs) prolongs survival and normal behavior of prion-infected mice immunotolerant to treatment. PLoS ONE 14(7), e0219995 (2019)
Jain, A., Jain, S.K.: Colon targeted liposomal systems (CTLS): theranostic potential. Curr. Mol. Med. 15(7), 621–633 (2015)
Kaul, A., Chaturvedi, S., Attri, A., Kalra, M., Mishra, A.: Targeted theranostic liposomes: rifampicin and ofloxacin loaded pegylated liposomes for theranostic application in mycobacterial infections. RSC Adv. 6(34), 28919–28926 (2016)
Xu, H.L., Yang, J.J., ZhuGe, D.L., Lin, M.T., Zhu, Q.Y., Jin, B.H., Tong, M.Q., Shen, B.X., Xiao, J., Zhao, Y.Z.: Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv. Healthc. Mater. 7(9), 1701130 (2018)
Wang, M., Li, L., Zhang, X., Liu, Y., Zhu, R., Liu, L., Fang, Y., Gao, Z., Gao, D.: Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy. ACS Sustain. Chem. Eng. 6(12), 17124–17133 (2018)
Tajvar, S., Mohammadi, S., Askari, A., Janfaza, S., Nikkhah, M., Tamjid, E., Hosseinkhani, S.: Preparation of liposomal doxorubicin-graphene nanosheet and evaluation of its in vitro anti-cancer effects. J. Liposome Res. 29(2), 163–170 (2019)
Chen, C., Gao, K., Lian, H., Chen, C., Yan, X.: Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug release properties. Biosens. Bioelectron. 131, 185–192 (2019)
Prajapati, S.K., Jain, A., Jain, A., Jain, S.: Biodegradable polymers and constructs: a novel approach in drug delivery. Eur. Polym. J. (2019)
Yari, H., Nkepang, G., Awasthi, V.: Surface modification of liposomes by a lipopolymer targeting prostate specific membrane antigen for theranostic delivery in prostate cancer. Materials 12(5), 756 (2019)
Ma, M., Lei, M., Tan, X., Tan, F., Li, N.: Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery. RSC Adv. 6(3), 1945–1957 (2016)
Prasad, R., Yadav, A.S., Gorain, M., Chauhan, D.S., Kundu, G.C., Srivastava, R., Selvaraj, K.: Graphene oxide supported liposomes as red emissive theranostics for phototriggered tissue visualization and tumor regression. ACS Appl. Bio Mater. 2(8), 3312–3320 (2019)
Kim, M.W., Jeong, H.Y., Kang, S.J., Jeong, I.H., Choi, M.J., You, Y.M., Im, C.S., Song, I.H., Lee, T.S., Lee, J.S.: Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics 9(3), 837 (2019)
Wen, C.-J., Zhang, L.-W., Al-Suwayeh, S.A., Yen, T.-C., Fang, J.-Y.: Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomed. 7, 1599 (2012)
Singh, R.P., Sharma, G., Kumari, L., Koch, B., Singh, S., Bharti, S., Rajinikanth, P.S., Pandey, B.L., Muthu, M.S.: RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf. B Biointerfaces 147, 129–141 (2016)
Yue, T., Xu, H.-L., Chen, P.-P., Zheng, L., Huang, Q., Sheng, W.-S., Zhuang, Y.-D., Jiao, L.-Z., Chi, T.-T., ZhuGe, D.-L.: Combination of coenzyme Q10-loaded liposomes with ultrasound targeted microbubbles destruction (UTMD) for early theranostics of diabetic nephropathy. Int. J. Pharm. 528(1–2), 664–674 (2017)
Zheng, X.-C., Ren, W., Zhang, S., Zhong, T., Duan, X.-C., Yin, Y.-F., Xu, M.-Q., Hao, Y.-L., Li, Z.-T., Li, H.: The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 13, 1495 (2018)
Sheng, D., Liu, T., Deng, L., Zhang, L., Li, X., Xu, J., Hao, L., Li, P., Ran, H., Chen, H.: Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 165, 1–13 (2018)
Matsuki, D., Adewale, O., Horie, S., Okajima, J., Komiya, A., Oluwafemi, O., Maruyama, S., Mori, S., Kodama, T.: Treatment of tumor in lymph nodes using near-infrared laser light-activated thermosensitive liposome-encapsulated doxorubicin and gold nanorods. J. Biophotonics 10(12), 1676–1682 (2017)
Pang, X., Wang, J., Tan, X., Guo, F., Lei, M., Ma, M., Yu, M., Tan, F., Li, N.: Dual-modal imaging-guided theranostic nanocarriers based on indocyanine green and mTOR inhibitor rapamycin. ACS Appl. Mater. Interfaces 8(22), 13819–13829 (2016)
Jain, A., Jain, S.K.: Stimuli-responsive smart liposomes in cancer targeting. Curr. Drug Targets 19(3), 259–270 (2018). https://doi.org/10.2174/1389450117666160208144143
Zhou, M., Wen, K., Bi, Y., Lu, H., Chen, J., Hu, Y., Chai, Z.: The application of stimuli-responsive nanocarriers for targeted drug delivery. Curr. Top. Med. Chem. 17(20), 2319–2334 (2017)
Jain, A., Jain, S.K.: Advances in tumor targeted liposomes. Curr. Mol. Med. (2018). https://doi.org/10.2174/1566524018666180416101522
Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991 (2013)
Jain, A., Tiwari, A., Verma, A., Jain, S.K.: Ultrasound-based triggered drug delivery to tumors. Drug Deliv. Transl. Res. 1–15 (2017)
Yang, Y., Wang, S., Wang, Y., Wang, X., Wang, Q., Chen, M.: Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 32(7), 1301–1316 (2014)
Wang, M., Gong, G., Feng, J., Wang, T., Ding, C., Zhou, B., Jiang, W., Fu, J.: Dual pH-mediated mechanized hollow zirconia nanospheres. ACS Appl. Mater. Interfaces 8(35), 23289–23301 (2016)
Dai, Y., Cai, H., Duan, Z., Ma, X., Gong, Q., Luo, K., Gu, Z.: Effect of polymer side chains on drug delivery properties for cancer therapy. J. Biomed. Nanotechnol. 13(11), 1369–1385 (2017)
Shim, M.S., Xia, Y.: A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem. Int. Ed. 52(27), 6926–6929 (2013)
Noyhouzer, T., L’Homme, C., Beaulieu, I., Mazurkiewicz, S., Kuss, S., Kraatz, H.B., Canesi, S., Mauzeroll, J.: Ferrocene-modified phospholipid: an innovative precursor for redox-triggered drug delivery vesicles selective to cancer cells. Langmuir 32(17), 4169–4178 (2016)
Zhang, P., Zhang, H., He, W., Zhao, D., Song, A., Luan, Y.: Disulfide-linked amphiphilic polymer-docetaxel conjugates assembled redox-sensitive micelles for efficient antitumor drug delivery. Biomacromolecules 17(5), 1621–1632 (2016)
Wu, J., Zhao, L., Xu, X., Bertrand, N., Choi, W.I., Yameen, B., Shi, J., Shah, V., Mulvale, M., MacLean, J.L.: Hydrophobic cysteine poly (disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics. Angew. Chem. Int. Ed. 54(32), 9218–9223 (2015)
Chen, B., Dai, W., He, B., Zhang, H., Wang, X., Wang, Y., Zhang, Q.: Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7(3), 538 (2017)
Jain, A., Kumari, R., Tiwari, A., Verma, A., Tripathi, A., Shrivastava, A., Jain, S.K.: Nanocarrier based advances in drug delivery to tumor: an overview. Curr. Drug Targets 19(13), 1498–1518 (2018). https://doi.org/10.2174/1389450119666180131105822
Yuba, E.: Stimuli-responsive polymer-modified liposomes and their application to DDS. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, pp. 305–319. Elsevier, Amsterdam (2019)
Sawant, R.R., Torchilin, V.P.: Challenges in development of targeted liposomal therapeutics. AAPS J. 14(2), 303–315 (2012)
Lee, Y.-H., Chang, D.-S.: Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Sci. Rep. 7, 46688 (2017)
Fu, H., Shi, K., Hu, G., Yang, Y., Kuang, Q., Lu, L., Zhang, L., Chen, W., Dong, M., Chen, Y., He, Q.: Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol). J. Pharm. Sci. 104(3), 1160–1173 (2015). https://doi.org/10.1002/jps.24291
Yatvin, M.B., Weinstein, J.N., Dennis, W.H., Blumenthal, R.: Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202(4374), 1290–1293 (1978)
Jain, A., Gulbake, A., Shilpi, S., Jain, A., Hurkat, P., Jain, S.K.: A new horizon in modifications of chitosan: syntheses and applications. Crit. Rev. Ther. Drug Carrier Syst. 30(2), 91–181 (2013)
Jain, A., Jain, S.K.: Environmentally responsive chitosan-based nanocarriers (CBNs). In: Handbook of Polymers for Pharmaceutical Technologies, Biodegradable Polymers, vol. 3, 105 (2015)
Aoshima, S., Oda, H., Kobayashi, E.: Synthesis of thermally‐induced phase separating polymer with well‐defined polymer structure by living cationic polymerization. I. Synthesis of poly(vinyl ether)s with oxyethylene units in the pendant and its phase separation behavior in aqueous solution. J. Polym. Sci. Part A Polym. Chem. 30(11), 2407–2413 (1992)
Kono, K., Ozawa, T., Yoshida, T., Ozaki, F., Ishizaka, Y., Maruyama, K., Kojima, C., Harada, A., Aoshima, S.: Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 31(27), 7096–7105 (2010). https://doi.org/10.1016/j.biomaterials.2010.05.045
Jhaveri, A.: Magnetic field-responsive nanocarriers. In: Smart Pharmaceutical Nanocarriers, pp. 267–308. World Scientific, Singapore (2016)
Arias, J.L., Clares, B., Morales, M.E., Gallardo, V., Ruiz, M.A.: Lipid-based drug delivery systems for cancer treatment. Curr. Drug Targets 12(8), 1151–1165 (2011)
Conceição, D., Ferreira, D., Ferreira, L.: Photochemistry and cytotoxicity evaluation of heptamethinecyanine near infrared (NIR) dyes. Int. J. Mol. Sci. 14(9), 18557–18571 (2013)
Zhu, L., Torchilin, V.P.: Stimulus-responsive nanopreparations for tumor targeting. Integr. Biol. (Camb.) 5(1), 96–107 (2013). https://doi.org/10.1039/c2ib20135f
Fleige, E., Quadir, M.A., Haag, R.: Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev. 64(9), 866–884 (2012)
Yavlovich, A., Smith, B., Gupta, K., Blumenthal, R., Puri, A.: Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications. Mol. Membr. Biol. 27(7), 364–381 (2010)
Yavlovich, A., Singh, A., Tarasov, S., Capala, J., Blumenthal, R., Puri, A.: Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J. Therm. Anal. Calorim. 98(1), 97–104 (2009)
Yavlovich, A., Singh, A., Blumenthal, R., Puri, A.: A novel class of photo-triggerable liposomes containing DPPC: DC(8,9)PC as vehicles for delivery of doxorubcin to cells. Biochim. Biophys. Acta (BBA) Biomembr. 1808(1), 117–126 (2011)
Jain, A., Jain, S.K.: Application potential of engineered liposomes in tumor targeting, Chap. 9. In: Grumezescu, A. (ed.) Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, pp. 171–192. Elsevier—Health Sciences Division (2017)
Jain, A.J., Sanjay, K.: Liposomes in cancer therapy. In: Carlos, J. (ed.) Nanocarrier Systems for Drug Delivery, pp. 1–42. Nova Science Publishers, New York (2016)
Jain, S.K., Jain, A.: Ligand mediated drug targeted liposomes. In: Liposomal Delivery Systems: Advances and Challenges, vol. 2. p. 145. Future Medicine Ltd., Unitec House, 2 Albert Place, London N3 1QB, UK (2016)
Ferrara, K.W.: Driving delivery vehicles with ultrasound. Adv. Drug Deliv. Rev. 60(10), 1097–1102 (2008)
Rosenthal, I., Sostaric, J.Z., Riesz, P.: Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. 11(6), 349–363 (2004)
Schroeder, A., Avnir, Y., Weisman, S., Najajreh, Y., Gabizon, A., Talmon, Y., Kost, J., Barenholz, Y.: Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir 23(7), 4019–4025 (2007)
Wang, Y., Kohane, D.S.: External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2(6), 17020 (2017)
Awad, N.S., Paul, V., Al-Sayah, M.H., Husseini, G.A.: Ultrasonically controlled albumin-conjugated liposomes for breast cancer therapy. Artif. Cells Nanomed. Biotechnol. 47(1), 705–714 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Verma, A. et al. (2020). Liposomes for Advanced Drug Delivery. In: Nayak, A., Hasnain, M. (eds) Advanced Biopolymeric Systems for Drug Delivery. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46923-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-46923-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46922-1
Online ISBN: 978-3-030-46923-8
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)