Skip to main content

Liposomes for Advanced Drug Delivery

  • Chapter
  • First Online:
Advanced Biopolymeric Systems for Drug Delivery

Abstract

Liposomes are sphere-shaped vesicles consisting of one or more phospholipid bilayers. The liposomal drug delivery systems were utilized for delivery of compounds for different diseases. These systems improve the stability as well as cellular uptake of drugs. Site-specific delivery to the target site reduced the site effects. This chapter summarizes the recent advances in liposomal drug delivery systems (i) therapeutic applications-based chemotherapy; (ii) chemotherapy in combination to gene therapy and immunotherapy; (iii) theranostic applications for precise detection and simultaneous treatment of critical diseases and heavy metal toxicity; (iv) stimuli-triggered liposomes. This chapter gives a detailed account on aforementioned applications which might be beneficial to pharmaceutical scientists and industries to develop safe and effective liposomal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lila, A.S.A., Ishida, T.: Liposomal delivery systems: design optimization and current applications. Biol. Pharm. Bull. 40(1), 1–10 (2017)

    Google Scholar 

  2. da Cruz, M.T.G., Simões, S., Pires, P.P., Nir, S., de Lima, M.C.P.: Kinetic analysis of the initial steps involved in lipoplex–cell interactions: effect of various factors that influence transfection activity. Biochim. Biophys. Acta (BBA) Biomembr. 1510(1–2), 136–151 (2001)

    Google Scholar 

  3. Chen, W.C., Huang, L.: Non-viral vector as vaccine carrier. Adv. Genet. 54, 315–337 (2005)

    CAS  Google Scholar 

  4. Zangabad, P.S., Mirkiani, S., Shahsavari, S., Masoudi, B., Masroor, M., Hamed, H., Jafari, Z., Taghipour, Y.D., Hashemi, H., Karimi, M.: Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev. 7(1), 95–122 (2018)

    CAS  Google Scholar 

  5. Jain, A., Jain, S.K.: In vitro release kinetics model fitting of liposomes: an insight. Chem. Phys. Lipids 201, 28–40 (2016). https://doi.org/10.1016/j.chemphyslip.2016.10.005

  6. Xing, H., Hwang, K., Lu, Y.: Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 6(9), 1336 (2016)

    CAS  Google Scholar 

  7. Jain, A., Hurkat, P., Jain, S.K.: Development of liposomes using formulation by design: basics to recent advances. Chem. Phys. Lipids 224, 104764 (2019). https://doi.org/10.1016/j.chemphyslip.2019.03.017

    Article  CAS  Google Scholar 

  8. Matsos, A., Johnston, I.: Chemotherapy-induced cognitive impairments: a systematic review of the animal literature. Neurosci. Biobehav. Rev. (2019)

    Google Scholar 

  9. McKnight, J.A.: Principles of chemotherapy. Clin. Tech. Small Anim. Pract. 18(2), 67–72 (2003)

    Google Scholar 

  10. Argyriou, A.A., Assimakopoulos, K., Iconomou, G., Giannakopoulou, F., Kalofonos, H.P.: Either called “chemobrain” or “chemofog”, the long-term chemotherapy-induced cognitive decline in cancer survivors is real. J. Pain Symptom Manage. 41(1), 126–139 (2011)

    Google Scholar 

  11. Mehrling, T.: Chemotherapy is getting ‘smarter’. Future Oncol. 11(4), 549–552 (2015)

    CAS  Google Scholar 

  12. Jain, A., Jain, S.K.: Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev. Ind. Pharm. 42(1), 136–149 (2016). https://doi.org/10.3109/03639045.2015.1036066

    Article  CAS  Google Scholar 

  13. Jain, A., Tiwari, A., Verma, A., Jain, S.K.: Vitamins for cancer prevention and treatment: an insight. Curr. Mol. Med. 17(5), 321–340 (2017). https://doi.org/10.2174/1566524018666171205113329

    Article  CAS  Google Scholar 

  14. Prajapati, S.K., Jain, A., Shrivastava, C., Jain, A.K.: Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol. 123, 691–703 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.116

    Article  CAS  Google Scholar 

  15. Handali, S., Moghimipour, E., Rezaei, M., Ramezani, Z., Kouchak, M., Amini, M., Angali, K.A., Saremy, S., Dorkoosh, F.A.: A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed. Pharmacother. 108, 1259–1273 (2018)

    CAS  Google Scholar 

  16. Tiwari, A., Saraf, S., Jain, A., Panda, P.K., Verma, A., Jain, S.K.: Basics to advances in nanotherapy of colorectal cancer. Drug Deliv. Transl. Res. 1–20 (2019)

    Google Scholar 

  17. Ben, M.S., Marina, K., Mukund, G.S.: Eudragit S-100 encapsulated chitosan coated liposomes containing prednisolone for colon targeting: in vitro, ex vivo and in vivo evaluation. J. Young Pharm. 11(1) (2019)

    Google Scholar 

  18. Ramadass, S.K., Anantharaman, N.V., Subramanian, S., Sivasubramanian, S., Madhan, B.: Paclitaxel/epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids Surf. B Biointerfaces 125, 65–72 (2015)

    CAS  Google Scholar 

  19. de Oliveira Silva, J., Fernandes, R.S., Oda, C.M.R., Ferreira, T.H., Botelho, A.F.M., Melo, M.M., de Miranda, M.C., Gomes, D.A., Cassali, G.D., Townsend, D.M.: Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother. 118, 109323 (2019)

    Google Scholar 

  20. Patil, Y., Shmeeda, H., Amitay, Y., Ohana, P., Kumar, S., Gabizon, A.: Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomed. Nanotechnol. Biol. Med. 14(4), 1407–1416 (2018)

    CAS  Google Scholar 

  21. Peres-Filho, M.J., dos Santos, A.P., Nascimento, T.L., de Ávila, R.I., Ferreira, F.S., Valadares, M.C., Lima, E.M.: Antiproliferative activity and VEGF expression reduction in MCF7 and PC-3 cancer cells by paclitaxel and imatinib co-encapsulation in folate-targeted liposomes. AAPS PharmSciTech 19(1), 201–212 (2018)

    CAS  Google Scholar 

  22. Panda, P.K., Saraf, S., Tiwari, A., Verma, A., Raikwar, S., Jain, A., Jain, S.K.: Novel strategies for targeting prostate cancer. Curr. Drug Deliv. (2019). https://doi.org/10.2174/1567201816666190821143805

    Article  Google Scholar 

  23. Jain, A., Jain, S.K.: Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit. Rev. Ther. Drug Carrier Syst. 32(2), 149–180 (2015). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2015010903

    Article  Google Scholar 

  24. Jain, A., Jain, S.K.: Brain targeting using surface functionalized nanocarriers in human solid tumors. In: Singh, B., Jain, N.K., Katare, O.P. (ed.) Drug Nanocarriers. Series Nanobiomedicine, pp. 203–255. Series Nanobiomedicine Studium Press, Houston LLC, USA (2014). Series ISBN: 1-62699-050-6

    Google Scholar 

  25. Lakkadwala, S., Singh, J.: Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf. B Biointerfaces 173, 27–35 (2019)

    CAS  Google Scholar 

  26. Li, M., Shi, K., Tang, X., Wei, J., Cun, X., Chen, X., Yu, Q., Zhang, Z., He, Q.: pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur. J. Pharm. Sci. 124, 240–248 (2018)

    CAS  Google Scholar 

  27. Zhang, C., Zhang, S., Zhi, D., Zhao, Y., Cui, S., Cui, J.: Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloids Surf. Physicochem. Eng. Aspects 124054 (2019)

    Google Scholar 

  28. Ma, J., Zhuang, H., Zhuang, Z., Lu, Y., Xia, R., Gan, L., Wu, Y.: Development of docetaxel liposome surface modified with CD133 aptamers for lung cancer targeting. Artif. Cells Nanomed. Biotechnol. 46(8), 1864–1871 (2018)

    CAS  Google Scholar 

  29. Nkanga, C.I., Walker, R.B., Krause, R.W.: pH-Dependent release of isoniazid from isonicotinic acid (4-hydroxy-benzylidene)-hydrazide loaded liposomes. J. Drug Deliv. Sci. Technol. 45, 264–271 (2018)

    CAS  Google Scholar 

  30. Alomrani, A.H., Shazly, G.A., Amara, A.A., Badran, M.M.: Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: in vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf. B Biointerfaces 121, 74–81 (2014)

    CAS  Google Scholar 

  31. Verma, I.M., Naldini, L., Kafri, T., Miyoshi, H., Takahashi, M., Blömer, U., Somia, N., Wang, L., Gage, F.: Gene therapy: promises, problems and prospects. In: Genes and Resistance to Disease, pp. 147–157. Springer, Berlin (2000)

    Google Scholar 

  32. Cross, D., Burmester, J.K.: Gene therapy for cancer treatment: past, present and future. Clin. Med. Res. 4(3), 218–227 (2006)

    CAS  Google Scholar 

  33. Jain, A., Tiwari, A., Verma, A., Saraf, S., Sanjay Kumar, J.: Combination cancer therapy using multifunctional liposomes. Crit. Rev. Ther. Drug Carrier Syst. (2019)

    Google Scholar 

  34. Jain, A., Gulbake, A., Jain, A., Shilpi, S., Hurkat, P., Jain, S.K.: Dual drug delivery using “smart” liposomes for triggered release of anticancer agents. J. Nanopart. Res. 15(7), 1772 (2013)

    Google Scholar 

  35. Sun, W., Wang, Y., Cai, M., Lin, L., Chen, X., Cao, Z., Zhu, K., Shuai, X.: Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy. Biomater. Sci. 5(12), 2468–2479 (2017)

    CAS  Google Scholar 

  36. Yao, Y., Wang, T., Liu, Y., Zhang, N.: Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol. 47(1), 1374–1383 (2019)

    CAS  Google Scholar 

  37. Zuo, J., Jiang, Y., Zhang, E., Chen, Y., Liang, Z., Zhu, J., Zhao, Y., Xu, H., Liu, G., Liu, J.: Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sci. 227, 145–152 (2019)

    CAS  Google Scholar 

  38. Bi, Y., Lee, R.J., Wang, X., Sun, Y., Wang, M., Li, L., Li, C., Xie, J., Teng, L.: Liposomal codelivery of an SN38 prodrug and a survivin siRNA for tumor therapy. Int. J. Nanomed. 13, 5811 (2018)

    CAS  Google Scholar 

  39. Yan, H., Guo, W., Li, K., Tang, M., Zhao, X., Lei, Y., Nie, C.-L., Yuan, Z.: Combination of DESI2 and endostatin gene therapy significantly improves antitumor efficacy by accumulating DNA lesions, inducing apoptosis and inhibiting angiogenesis. Exp. Cell Res. 371(1), 50–62 (2018)

    CAS  Google Scholar 

  40. Duan, X., Mu, M., Yan, J., Bai, L., Zhong, L., Zhu, Y., Pan, H., Zhang, M., Shi, J.: Co-delivery of Aurora-A inhibitor XY-4 and Bcl-xl siRNA enhances antitumor efficacy for melanoma therapy. Int. J. Nanomed. 13, 1443 (2018)

    CAS  Google Scholar 

  41. Jain, A., Jain, S.K.: P-gp inhibitors: a potential tool to overcome drug resistance in cancer chemotherapy. In: Nanomedicine and Tissue Engineering: State of the Art and Recent Trends, p. 247 (2016)

    Google Scholar 

  42. Xu, W.-W., Liu, D.-Y., Cao, Y.-C., Wang, X.-Y.: GE11 peptide-conjugated nanoliposomes to enhance the combinational therapeutic efficacy of docetaxel and siRNA in laryngeal cancers. Int. J. Nanomed. 12, 6461 (2017)

    Google Scholar 

  43. Xu, L., Zhang, W., Park, H.-B., Kwak, M., Oh, J., Lee, P.C., Jin, J.-O.: Indocyanine green and poly I:C containing thermo-responsive liposomes used in immune-photothermal therapy prevent cancer growth and metastasis. J. Immunother. Cancer 7(1), 1–14 (2019)

    Google Scholar 

  44. Yang, X., Zhao, J., Duan, S., Hou, X., Li, X., Hu, Z., Tang, Z., Mo, F., Lu, X.: Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers. Theranostics 9(14), 4066 (2019)

    CAS  Google Scholar 

  45. Yang, Z.-Z., Gao, W., Liu, Y.-J., Pang, N., Qi, X.-R.: Delivering siRNA and chemotherapeutic molecules across BBB and BTB for intracranial glioblastoma therapy. Mol. Pharm. 14(4), 1012–1022 (2017)

    Google Scholar 

  46. Abu Lila, A.S., Kato, C., Fukushima, M., Huang, C.-L., Wada, H., Ishida, T.: Downregulation of thymidylate synthase by RNAi molecules enhances the antitumor effect of pemetrexed in an orthotopic malignant mesothelioma xenograft mouse model. Int. J. Oncol. 48(4), 1399–1407 (2016)

    Google Scholar 

  47. Daniela Di Paolo, D.Y., Pastorino, F., Emionite, L., Cilli, M., Daga, A., Destefanis, E., Di Fiore, A., Piaggio, F., Brignole, C., Xu, X.: New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK. Oncotarget 6(30), 28774 (2015)

    Google Scholar 

  48. Li, Y., Liu, R., Yang, J., Ma, G., Zhang, Z., Zhang, X.: Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy. Biomaterials 35(36), 9731–9745 (2014)

    CAS  Google Scholar 

  49. Castro, R., de Amorim, I., Pereira, R., Silva, S., Pinheiro, L., Pinto, A., Azevedo, E., Demicheli, C., Caliari, M., Mosser, D.: Hepatic fibropoiesis in dogs naturally infected with Leishmania (Leishmania) infantum treated with liposome-encapsulated meglumine antimoniate and allopurinol. Vet. Parasitol. 250, 22–29 (2018)

    CAS  Google Scholar 

  50. Bender, H., Noyes, N., Annis, J.L., Hitpas, A., Mollnow, L., Croak, K., Kane, S., Wagner, K., Dow, S., Zabel, M.: PrPC knockdown by liposome-siRNA-peptide complexes (LSPCs) prolongs survival and normal behavior of prion-infected mice immunotolerant to treatment. PLoS ONE 14(7), e0219995 (2019)

    CAS  Google Scholar 

  51. Jain, A., Jain, S.K.: Colon targeted liposomal systems (CTLS): theranostic potential. Curr. Mol. Med. 15(7), 621–633 (2015)

    CAS  Google Scholar 

  52. Kaul, A., Chaturvedi, S., Attri, A., Kalra, M., Mishra, A.: Targeted theranostic liposomes: rifampicin and ofloxacin loaded pegylated liposomes for theranostic application in mycobacterial infections. RSC Adv. 6(34), 28919–28926 (2016)

    CAS  Google Scholar 

  53. Xu, H.L., Yang, J.J., ZhuGe, D.L., Lin, M.T., Zhu, Q.Y., Jin, B.H., Tong, M.Q., Shen, B.X., Xiao, J., Zhao, Y.Z.: Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv. Healthc. Mater. 7(9), 1701130 (2018)

    Google Scholar 

  54. Wang, M., Li, L., Zhang, X., Liu, Y., Zhu, R., Liu, L., Fang, Y., Gao, Z., Gao, D.: Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy. ACS Sustain. Chem. Eng. 6(12), 17124–17133 (2018)

    CAS  Google Scholar 

  55. Tajvar, S., Mohammadi, S., Askari, A., Janfaza, S., Nikkhah, M., Tamjid, E., Hosseinkhani, S.: Preparation of liposomal doxorubicin-graphene nanosheet and evaluation of its in vitro anti-cancer effects. J. Liposome Res. 29(2), 163–170 (2019)

    CAS  Google Scholar 

  56. Chen, C., Gao, K., Lian, H., Chen, C., Yan, X.: Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug release properties. Biosens. Bioelectron. 131, 185–192 (2019)

    CAS  Google Scholar 

  57. Prajapati, S.K., Jain, A., Jain, A., Jain, S.: Biodegradable polymers and constructs: a novel approach in drug delivery. Eur. Polym. J. (2019)

    Google Scholar 

  58. Yari, H., Nkepang, G., Awasthi, V.: Surface modification of liposomes by a lipopolymer targeting prostate specific membrane antigen for theranostic delivery in prostate cancer. Materials 12(5), 756 (2019)

    CAS  Google Scholar 

  59. Ma, M., Lei, M., Tan, X., Tan, F., Li, N.: Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery. RSC Adv. 6(3), 1945–1957 (2016)

    CAS  Google Scholar 

  60. Prasad, R., Yadav, A.S., Gorain, M., Chauhan, D.S., Kundu, G.C., Srivastava, R., Selvaraj, K.: Graphene oxide supported liposomes as red emissive theranostics for phototriggered tissue visualization and tumor regression. ACS Appl. Bio Mater. 2(8), 3312–3320 (2019)

    CAS  Google Scholar 

  61. Kim, M.W., Jeong, H.Y., Kang, S.J., Jeong, I.H., Choi, M.J., You, Y.M., Im, C.S., Song, I.H., Lee, T.S., Lee, J.S.: Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics 9(3), 837 (2019)

    CAS  Google Scholar 

  62. Wen, C.-J., Zhang, L.-W., Al-Suwayeh, S.A., Yen, T.-C., Fang, J.-Y.: Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomed. 7, 1599 (2012)

    CAS  Google Scholar 

  63. Singh, R.P., Sharma, G., Kumari, L., Koch, B., Singh, S., Bharti, S., Rajinikanth, P.S., Pandey, B.L., Muthu, M.S.: RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf. B Biointerfaces 147, 129–141 (2016)

    Google Scholar 

  64. Yue, T., Xu, H.-L., Chen, P.-P., Zheng, L., Huang, Q., Sheng, W.-S., Zhuang, Y.-D., Jiao, L.-Z., Chi, T.-T., ZhuGe, D.-L.: Combination of coenzyme Q10-loaded liposomes with ultrasound targeted microbubbles destruction (UTMD) for early theranostics of diabetic nephropathy. Int. J. Pharm. 528(1–2), 664–674 (2017)

    CAS  Google Scholar 

  65. Zheng, X.-C., Ren, W., Zhang, S., Zhong, T., Duan, X.-C., Yin, Y.-F., Xu, M.-Q., Hao, Y.-L., Li, Z.-T., Li, H.: The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 13, 1495 (2018)

    CAS  Google Scholar 

  66. Sheng, D., Liu, T., Deng, L., Zhang, L., Li, X., Xu, J., Hao, L., Li, P., Ran, H., Chen, H.: Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 165, 1–13 (2018)

    CAS  Google Scholar 

  67. Matsuki, D., Adewale, O., Horie, S., Okajima, J., Komiya, A., Oluwafemi, O., Maruyama, S., Mori, S., Kodama, T.: Treatment of tumor in lymph nodes using near-infrared laser light-activated thermosensitive liposome-encapsulated doxorubicin and gold nanorods. J. Biophotonics 10(12), 1676–1682 (2017)

    CAS  Google Scholar 

  68. Pang, X., Wang, J., Tan, X., Guo, F., Lei, M., Ma, M., Yu, M., Tan, F., Li, N.: Dual-modal imaging-guided theranostic nanocarriers based on indocyanine green and mTOR inhibitor rapamycin. ACS Appl. Mater. Interfaces 8(22), 13819–13829 (2016)

    CAS  Google Scholar 

  69. Jain, A., Jain, S.K.: Stimuli-responsive smart liposomes in cancer targeting. Curr. Drug Targets 19(3), 259–270 (2018). https://doi.org/10.2174/1389450117666160208144143

    Article  CAS  Google Scholar 

  70. Zhou, M., Wen, K., Bi, Y., Lu, H., Chen, J., Hu, Y., Chai, Z.: The application of stimuli-responsive nanocarriers for targeted drug delivery. Curr. Top. Med. Chem. 17(20), 2319–2334 (2017)

    CAS  Google Scholar 

  71. Jain, A., Jain, S.K.: Advances in tumor targeted liposomes. Curr. Mol. Med. (2018). https://doi.org/10.2174/1566524018666180416101522

    Article  Google Scholar 

  72. Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991 (2013)

    CAS  Google Scholar 

  73. Jain, A., Tiwari, A., Verma, A., Jain, S.K.: Ultrasound-based triggered drug delivery to tumors. Drug Deliv. Transl. Res. 1–15 (2017)

    Google Scholar 

  74. Yang, Y., Wang, S., Wang, Y., Wang, X., Wang, Q., Chen, M.: Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 32(7), 1301–1316 (2014)

    CAS  Google Scholar 

  75. Wang, M., Gong, G., Feng, J., Wang, T., Ding, C., Zhou, B., Jiang, W., Fu, J.: Dual pH-mediated mechanized hollow zirconia nanospheres. ACS Appl. Mater. Interfaces 8(35), 23289–23301 (2016)

    CAS  Google Scholar 

  76. Dai, Y., Cai, H., Duan, Z., Ma, X., Gong, Q., Luo, K., Gu, Z.: Effect of polymer side chains on drug delivery properties for cancer therapy. J. Biomed. Nanotechnol. 13(11), 1369–1385 (2017)

    CAS  Google Scholar 

  77. Shim, M.S., Xia, Y.: A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem. Int. Ed. 52(27), 6926–6929 (2013)

    CAS  Google Scholar 

  78. Noyhouzer, T., L’Homme, C., Beaulieu, I., Mazurkiewicz, S., Kuss, S., Kraatz, H.B., Canesi, S., Mauzeroll, J.: Ferrocene-modified phospholipid: an innovative precursor for redox-triggered drug delivery vesicles selective to cancer cells. Langmuir 32(17), 4169–4178 (2016)

    CAS  Google Scholar 

  79. Zhang, P., Zhang, H., He, W., Zhao, D., Song, A., Luan, Y.: Disulfide-linked amphiphilic polymer-docetaxel conjugates assembled redox-sensitive micelles for efficient antitumor drug delivery. Biomacromolecules 17(5), 1621–1632 (2016)

    CAS  Google Scholar 

  80. Wu, J., Zhao, L., Xu, X., Bertrand, N., Choi, W.I., Yameen, B., Shi, J., Shah, V., Mulvale, M., MacLean, J.L.: Hydrophobic cysteine poly (disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics. Angew. Chem. Int. Ed. 54(32), 9218–9223 (2015)

    CAS  Google Scholar 

  81. Chen, B., Dai, W., He, B., Zhang, H., Wang, X., Wang, Y., Zhang, Q.: Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7(3), 538 (2017)

    CAS  Google Scholar 

  82. Jain, A., Kumari, R., Tiwari, A., Verma, A., Tripathi, A., Shrivastava, A., Jain, S.K.: Nanocarrier based advances in drug delivery to tumor: an overview. Curr. Drug Targets 19(13), 1498–1518 (2018). https://doi.org/10.2174/1389450119666180131105822

    Article  CAS  Google Scholar 

  83. Yuba, E.: Stimuli-responsive polymer-modified liposomes and their application to DDS. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, pp. 305–319. Elsevier, Amsterdam (2019)

    Google Scholar 

  84. Sawant, R.R., Torchilin, V.P.: Challenges in development of targeted liposomal therapeutics. AAPS J. 14(2), 303–315 (2012)

    CAS  Google Scholar 

  85. Lee, Y.-H., Chang, D.-S.: Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Sci. Rep. 7, 46688 (2017)

    Google Scholar 

  86. Fu, H., Shi, K., Hu, G., Yang, Y., Kuang, Q., Lu, L., Zhang, L., Chen, W., Dong, M., Chen, Y., He, Q.: Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol). J. Pharm. Sci. 104(3), 1160–1173 (2015). https://doi.org/10.1002/jps.24291

    Article  CAS  Google Scholar 

  87. Yatvin, M.B., Weinstein, J.N., Dennis, W.H., Blumenthal, R.: Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202(4374), 1290–1293 (1978)

    CAS  Google Scholar 

  88. Jain, A., Gulbake, A., Shilpi, S., Jain, A., Hurkat, P., Jain, S.K.: A new horizon in modifications of chitosan: syntheses and applications. Crit. Rev. Ther. Drug Carrier Syst. 30(2), 91–181 (2013)

    CAS  Google Scholar 

  89. Jain, A., Jain, S.K.: Environmentally responsive chitosan-based nanocarriers (CBNs). In: Handbook of Polymers for Pharmaceutical Technologies, Biodegradable Polymers, vol. 3, 105 (2015)

    Google Scholar 

  90. Aoshima, S., Oda, H., Kobayashi, E.: Synthesis of thermally‐induced phase separating polymer with well‐defined polymer structure by living cationic polymerization. I. Synthesis of poly(vinyl ether)s with oxyethylene units in the pendant and its phase separation behavior in aqueous solution. J. Polym. Sci. Part A Polym. Chem. 30(11), 2407–2413 (1992)

    Google Scholar 

  91. Kono, K., Ozawa, T., Yoshida, T., Ozaki, F., Ishizaka, Y., Maruyama, K., Kojima, C., Harada, A., Aoshima, S.: Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 31(27), 7096–7105 (2010). https://doi.org/10.1016/j.biomaterials.2010.05.045

    Article  CAS  Google Scholar 

  92. Jhaveri, A.: Magnetic field-responsive nanocarriers. In: Smart Pharmaceutical Nanocarriers, pp. 267–308. World Scientific, Singapore (2016)

    Google Scholar 

  93. Arias, J.L., Clares, B., Morales, M.E., Gallardo, V., Ruiz, M.A.: Lipid-based drug delivery systems for cancer treatment. Curr. Drug Targets 12(8), 1151–1165 (2011)

    CAS  Google Scholar 

  94. Conceição, D., Ferreira, D., Ferreira, L.: Photochemistry and cytotoxicity evaluation of heptamethinecyanine near infrared (NIR) dyes. Int. J. Mol. Sci. 14(9), 18557–18571 (2013)

    Google Scholar 

  95. Zhu, L., Torchilin, V.P.: Stimulus-responsive nanopreparations for tumor targeting. Integr. Biol. (Camb.) 5(1), 96–107 (2013). https://doi.org/10.1039/c2ib20135f

    Article  CAS  Google Scholar 

  96. Fleige, E., Quadir, M.A., Haag, R.: Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev. 64(9), 866–884 (2012)

    CAS  Google Scholar 

  97. Yavlovich, A., Smith, B., Gupta, K., Blumenthal, R., Puri, A.: Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications. Mol. Membr. Biol. 27(7), 364–381 (2010)

    CAS  Google Scholar 

  98. Yavlovich, A., Singh, A., Tarasov, S., Capala, J., Blumenthal, R., Puri, A.: Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J. Therm. Anal. Calorim. 98(1), 97–104 (2009)

    CAS  Google Scholar 

  99. Yavlovich, A., Singh, A., Blumenthal, R., Puri, A.: A novel class of photo-triggerable liposomes containing DPPC: DC(8,9)PC as vehicles for delivery of doxorubcin to cells. Biochim. Biophys. Acta (BBA) Biomembr. 1808(1), 117–126 (2011)

    Google Scholar 

  100. Jain, A., Jain, S.K.: Application potential of engineered liposomes in tumor targeting, Chap. 9. In: Grumezescu, A. (ed.) Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, pp. 171–192. Elsevier—Health Sciences Division (2017)

    Google Scholar 

  101. Jain, A.J., Sanjay, K.: Liposomes in cancer therapy. In: Carlos, J. (ed.) Nanocarrier Systems for Drug Delivery, pp. 1–42. Nova Science Publishers, New York (2016)

    Google Scholar 

  102. Jain, S.K., Jain, A.: Ligand mediated drug targeted liposomes. In: Liposomal Delivery Systems: Advances and Challenges, vol. 2. p. 145. Future Medicine Ltd., Unitec House, 2 Albert Place, London N3 1QB, UK (2016)

    Google Scholar 

  103. Ferrara, K.W.: Driving delivery vehicles with ultrasound. Adv. Drug Deliv. Rev. 60(10), 1097–1102 (2008)

    CAS  Google Scholar 

  104. Rosenthal, I., Sostaric, J.Z., Riesz, P.: Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. 11(6), 349–363 (2004)

    CAS  Google Scholar 

  105. Schroeder, A., Avnir, Y., Weisman, S., Najajreh, Y., Gabizon, A., Talmon, Y., Kost, J., Barenholz, Y.: Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir 23(7), 4019–4025 (2007)

    CAS  Google Scholar 

  106. Wang, Y., Kohane, D.S.: External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2(6), 17020 (2017)

    CAS  Google Scholar 

  107. Awad, N.S., Paul, V., Al-Sayah, M.H., Husseini, G.A.: Ultrasonically controlled albumin-conjugated liposomes for breast cancer therapy. Artif. Cells Nanomed. Biotechnol. 47(1), 705–714 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A. et al. (2020). Liposomes for Advanced Drug Delivery. In: Nayak, A., Hasnain, M. (eds) Advanced Biopolymeric Systems for Drug Delivery. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46923-8_12

Download citation

Publish with us

Policies and ethics