Skip to main content

Stress Fractures of the Midfoot and Forefoot

  • Chapter
  • First Online:
Stress Fractures in Athletes

Abstract

Stress fractures of the midfoot and forefoot are encountered frequently in athletes. In the general athlete population, stress fractures only have an incidence of approximately 1%; however, among athletes participating in running and jumping sports, the incidence increases to 15–20% (Fredericson et al., Top Magn Reson Imaging 17(5):309–25, 2006; Khan et al., Sports Health 10(2):169–74, 2018). In evaluating patients with potential stress injuries, clinicians should maintain a high index of suspicion as delays in diagnosis are common and often lead to prolonged pain, disability, and loss of time in sport. Patients usually present with a history of insidious, progressive activity-related pain without an inciting or traumatic event. Plain radiographs are often negative, and advanced imaging including MRI, CT, or bone scans is often needed to confirm the diagnosis of stress fracture.

Stress fractures of the foot include those involving the metatarsals, navicular, cuboid, cuneiform, and sesamoid. Metatarsal stress fractures (MTSF) are the most common stress fractures about the mid- and forefoot. First through fourth metatarsal stress fractures can often be managed successfully with protected weight-bearing. Surgical management of the fifth metatarsal stress fractures is often recommended especially for the elite-level athlete as it leads to earlier union with reduced rates of refracture. Navicular stress fractures are considered high risk given their elevated propensity to delayed healing, nonunion, fracture progression, and refracture. If identified early, navicular stress fractures can be managed successfully using conservative modalities. Operative management is warranted after failure of conservative management and in select elite athletes for more reliable return to play. Cuboid and cuneiform stress fractures are exceptionally rare and difficult to diagnose but commonly heal after a period of immobilization. Sesamoid stress fractures are uncommon and challenging injuries to treat. Management begins conservatively with immobilization. Surgery is indicated after 6 or more months of failed conservative management. This chapter will cover in detail stress fractures of the midfoot and forefoot as well as their diagnosis and recommended management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fredericson M, et al. Stress fractures in athletes. Top Magn Reson Imaging. 2006;17(5):309–25.

    Article  PubMed  Google Scholar 

  2. Khan M, et al. Epidemiology and impact on performance of lower extremity stress injuries in professional basketball players. Sports Health. 2018;10(2):169–74.

    Article  PubMed  Google Scholar 

  3. Wilson ES Jr, Katz FN. Stress fractures. An analysis of 250 consecutive cases. Radiology. 1969;92(3):481–6. passim.

    Article  PubMed  Google Scholar 

  4. Mandell JC, Khurana B, Smith SE. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skelet Radiol. 2017;46(9):1165–86.

    Article  Google Scholar 

  5. Leabhart JW. Stress fractures of the calcaneus. J Bone Joint Surg Am. 1959;41-a:1285–90.

    Article  CAS  PubMed  Google Scholar 

  6. Meurman KO. Less common stress fractures in the foot. Br J Radiol. 1981;54(637):1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Weinfeld SB, Haddad SL, Myerson MS. Metatarsal stress fractures. Clin Sports Med. 1997;16(2):319–38.

    Article  CAS  PubMed  Google Scholar 

  8. OʼHalloran E, Vioreanu M, Padinjarathala B. “Between the jigs and the reels”: bilateral metatarsal phalangeal stress fractures in a young Irish dancer. Clin J Sport Med. 2011;21(5):454–5.

    Article  PubMed  Google Scholar 

  9. Ford LT, Gilula LA. Stress fractures of the middle metatarsals following the Keller operation. J Bone Joint Surg. 1977;59(1):117–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kirkos JM, Kyrkos MJ, Kapetanos GA. Stress fractures of the lesser metatarsals after a Wilson osteotomy for correction of hallux valgus deformity. J Am Podiatr Med Assoc. 2006;96(1):63–6.

    Article  PubMed  Google Scholar 

  11. Malhotra K, et al. Metatarsal stress fractures secondary to soft-tissue osteochondroma in the foot: case report and literature review. Foot Ankle Surg. 2011;17(4):e51–4.

    Article  PubMed  Google Scholar 

  12. Sammarco GJ, Idusuyi OB. Stress fracture of the base of the third metatarsal after an endoscopic plantar fasciotomy: a case report. Foot Ankle Int. 1998;19(3):157–9.

    Article  CAS  PubMed  Google Scholar 

  13. van der Vlies CH, et al. Significant forefoot varus deformity resulting in progressive stress fractures of all lesser metatarsal bones. J Foot Ankle Surg. 2007;46(5):394–7.

    Article  PubMed  Google Scholar 

  14. McAllister DR, Koh J, Bergfeld JA. Plantar ganglion cyst associated with stress fracture of the third metatarsal. Am J Orthop (Belle Mead NJ). 2003;32(1):35–7.

    Google Scholar 

  15. Danon G, Pokrassa M. An unusual complication of the Keller bunionectomy: spontaneous stress fractures of all lesser metatarsals. J Foot Surg. 1989;28(4):335–9.

    CAS  PubMed  Google Scholar 

  16. Donahue SW, Sharkey NA. Strains in the metatarsals during the stance phase of gait: implications for stress fractures. J Bone Joint Surg Am. 1999;81(9):1236–44.

    Article  CAS  PubMed  Google Scholar 

  17. Chuckpaiwong B, et al. Second metatarsal stress fracture in sport: comparative risk factors between proximal and non-proximal locations. Br J Sports Med. 2007;41(8):510–4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8(6):344–53.

    Article  CAS  PubMed  Google Scholar 

  19. Hetsroni I, et al. Base of fourth metatarsal stress fracture: tendency for prolonged healing. Clin J Sport Med. 2005;15(3):186–8.

    Article  PubMed  Google Scholar 

  20. Giuliani J, et al. Barefoot-simulating footwear associated with metatarsal stress injury in 2 runners. Orthopedics. 2011;34(7):e320–3.

    Article  PubMed  Google Scholar 

  21. O’Malley MJ, et al. Stress fractures at the base of the second metatarsal in ballet dancers. Foot Ankle Int. 1996;17(2):89–94.

    Article  PubMed  Google Scholar 

  22. Harrington T, Crichton KJ, Anderson IF. Overuse ballet injury of the base of the second metatarsal. Am J Sports Med. 1993;21(4):591–8.

    Article  CAS  PubMed  Google Scholar 

  23. Goulart M, et al. Foot and ankle fractures in dancers. Clin Sports Med. 2008;27(2):295–304.

    Article  PubMed  Google Scholar 

  24. Kadel N, et al. Stability of Lisfranc joints in ballet pointe position. Foot Ankle Int. 2005;26(5):394–400.

    Article  PubMed  Google Scholar 

  25. Kadel NJ. Foot and ankle injuries in dance. Phys Med Rehabil Clin N Am. 2006;17(4):813–26.

    Article  PubMed  Google Scholar 

  26. Khan K, et al. Overuse injuries in classical ballet. Sports Med. 1995;19(5):341–57.

    Article  CAS  PubMed  Google Scholar 

  27. Muscolo L, et al. Stress fracture nonunion at the base of the second metatarsal in a ballet dancer. Am J Sports Med. 2004;32(6):1535–7.

    Article  PubMed  Google Scholar 

  28. Micheli LJ, Sohn RS, Solomon R. Stress fractures of the second metatarsal involving Lisfrancʼs joint in ballet dancers. A new overuse injury of the foot. J Bone Joint Surg. 1985;67(9):1372–5.

    Article  CAS  PubMed  Google Scholar 

  29. Watson HI, et al. Proximal base stress fracture of the second metatarsal in a Highland dancer. Case Rep. 2013;2013(jun26 1):bcr2013010284.

    Google Scholar 

  30. Muehleman C, et al. Contributions of bone density and geometry to the strength of the human second metatarsal. Bone. 2000;27(5):709–14.

    Article  CAS  PubMed  Google Scholar 

  31. Burr DB, et al. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18(3):189–200.

    Article  CAS  PubMed  Google Scholar 

  32. Zioupos P, Wang XT, Currey JD. Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J Biomech. 1996;29(8):989–1002.

    Article  CAS  PubMed  Google Scholar 

  33. Donahue SW, et al. Bone strain and microcracks at stress fracture sites in human metatarsals. Bone. 2000;27(6):827–33.

    Article  CAS  PubMed  Google Scholar 

  34. Kadel NJ, Teitz CC, Kronmal RA. Stress fractures in ballet dancers. Am J Sports Med. 1992;20(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  35. Banal F, et al. Ultrasound ability in early diagnosis of stress fracture of metatarsal bone. Ann Rheum Dis. 2006;65(7):977–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carmont MR, et al. Sequential metatarsal fatigue fractures secondary to abnormal foot biomechanics. Mil Med. 2006;171(4):292–7.

    Article  PubMed  Google Scholar 

  37. Milgrom C, et al. Metatarsal strains are sufficient to cause fatigue fracture during cyclic overloading. Foot Ankle Int. 2002;23(3):230–5.

    Article  CAS  PubMed  Google Scholar 

  38. Roub LW, et al. Bone stress: a radionuclide imaging perspective. Radiology. 1979;132(2):431–8.

    Article  CAS  PubMed  Google Scholar 

  39. Banal F, et al. Sensitivity and specificity of ultrasonography in early diagnosis of metatarsal bone stress fractures: a pilot study of 37 patients. J Rheumatol. 2009;36(8):1715–9.

    Article  PubMed  Google Scholar 

  40. Drakonaki EE, Garbi A. Metatarsal stress fracture diagnosed with high-resolution sonography. J Ultrasound Med. 2010;29(3):473–6.

    Article  PubMed  Google Scholar 

  41. Ha KI, et al. A clinical study of stress fractures in sports activities. Orthopedics. 1991;14(10):1089–95.

    Article  CAS  PubMed  Google Scholar 

  42. Albisetti W, et al. Stress fractures of the base of the metatarsal bones in young trainee ballet dancers. Int Orthop. 2010;34(1):51–5.

    Article  PubMed  Google Scholar 

  43. Hinz P, et al. Analysis of pressure distribution below the metatarsals with different insoles in combat boots of the German Army for prevention of march fractures. Gait Posture. 2008;27(3):535–8.

    Article  PubMed  Google Scholar 

  44. Franklyn-Miller A, et al. Foot orthoses in the prevention of injury in initial military training: a randomized controlled trial. Am J Sports Med. 2011;39(1):30–7.

    Article  PubMed  Google Scholar 

  45. Sarimo J, Orava S, Alanen J. Operative treatment of stress fractures of the proximal second metatarsal. Scand J Med Sci Sports. 2007;17(4):383–6.

    Article  CAS  PubMed  Google Scholar 

  46. Porter D, Foulk D, Rund A. Intramedullary screw fixation for chronic proximal fourth metatarsal stress fractures: a new technique for the fourth metatarsal “Jones”. Tech Foot Ankle Surg. 2010;9:147–53.

    Article  Google Scholar 

  47. Jones R. I. Fracture of the base of the fifth metatarsal bone by indirect violence. Ann Surg. 1902;35(6):697–700.2.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dameron TB Jr. Fractures of the proximal fifth metatarsal: selecting the best treatment option. J Am Acad Orthop Surg. 1995;3(2):110–4.

    Article  PubMed  Google Scholar 

  49. Lee KT, et al. Prognostic classification of fifth metatarsal stress fracture using plantar gap. Foot Ankle Int. 2013;34(5):691–6.

    Article  PubMed  Google Scholar 

  50. Torg JS, et al. Fractures of the base of the fifth metatarsal distal to the tuberosity. Classification and guidelines for non-surgical and surgical management. J Bone Joint Surg Am. 1984;66(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  51. Kaeding CC, et al. Management and return to play of stress fractures. Clin J Sport Med. 2005;15(6):442–7.

    Article  PubMed  Google Scholar 

  52. Kaeding CC, Miller T. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am. 2013;95(13):1214–20.

    Article  PubMed  Google Scholar 

  53. DeLee JC, Evans JP, Julian J. Stress fracture of the fifth metatarsal. Am J Sports Med. 1983;11(5):349–53.

    Article  CAS  PubMed  Google Scholar 

  54. Lawrence SJ, Botte MJ. Jones’ fractures and related fractures of the proximal fifth metatarsal. Foot Ankle. 1993;14(6):358–65.

    Article  CAS  PubMed  Google Scholar 

  55. Smith JW, Arnoczky SP, Hersh A. The intraosseous blood supply of the fifth metatarsal: implications for proximal fracture healing. Foot Ankle. 1992;13(3):143–52.

    Article  CAS  PubMed  Google Scholar 

  56. Byrd T. Jones fracture: relearning an old injury. South Med J. 1992;85(7):748–50.

    Article  CAS  PubMed  Google Scholar 

  57. Thevendran G, Deol RS, Calder JD. Fifth metatarsal fractures in the athlete: evidence for management. Foot Ankle Clin. 2013;18(2):237–54.

    Article  PubMed  Google Scholar 

  58. Orendurff MS, et al. Biomechanical analysis of stresses to the fifth metatarsal bone during sports maneuvers: implications for fifth metatarsal fractures. Phys Sportsmed. 2009;37(2):87–92.

    Article  PubMed  Google Scholar 

  59. Brockwell J, Yeung Y, Griffith JF. Stress fractures of the foot and ankle. Sports Med Arthrosc Rev. 2009;17(3):149–59.

    Article  PubMed  Google Scholar 

  60. Astion DJ, et al. Motion of the hindfoot after simulated arthrodesis. J Bone Joint Surg Am. 1997;79(2):241–6.

    Article  CAS  PubMed  Google Scholar 

  61. Shindle MK, et al. Stress fractures about the tibia, foot, and ankle. J Am Acad Orthop Surg. 2012;20(3):167–76.

    Article  PubMed  Google Scholar 

  62. McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PM R. 2016;8(3 Suppl):S113–24.

    Article  PubMed  Google Scholar 

  63. Anderson RB, Cohen BE. Stress fractures of the foot and ankle. In: Mann’s surgery of the foot and ankle. 9th ed: Elsevier, Inc; 2014.

    Google Scholar 

  64. Kerkhoffs GM, et al. Treatment of proximal metatarsal V fractures in athletes and non-athletes. Br J Sports Med. 2012;46(9):644–8.

    Article  PubMed  Google Scholar 

  65. Furia JP, et al. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am. 2010;92(4):846–54.

    Article  PubMed  Google Scholar 

  66. Huh J, et al. Biomechanical comparison of intramedullary screw versus low-profile plate fixation of a Jones fracture. Foot Ankle Int. 2016;37(4):411–8.

    Article  PubMed  Google Scholar 

  67. Shah SN, et al. Intramedullary screw fixation of proximal fifth metatarsal fractures: a biomechanical study. Foot Ankle Int. 2001;22(7):581–4.

    Article  CAS  PubMed  Google Scholar 

  68. Kelly IP, et al. Intramedullary screw fixation of Jones fractures. Foot Ankle Int. 2001;22(7):585–9.

    Article  CAS  PubMed  Google Scholar 

  69. Tan EW, Cata E, Schon LC. Use of a percutaneous pointed reduction clamp before screw fixation to prevent gapping of a fifth metatarsal base fracture: a technique tip. J Foot Ankle Surg. 2016;55(1):151–6.

    Article  PubMed  Google Scholar 

  70. Porter DA, Duncan M, Meyer SJ. Fifth metatarsal Jones fracture fixation with a 4.5-mm cannulated stainless steel screw in the competitive and recreational athlete: a clinical and radiographic evaluation. Am J Sports Med. 2005;33(5):726–33.

    Article  PubMed  Google Scholar 

  71. Reese K, et al. Cannulated screw fixation of Jones fractures: a clinical and biomechanical study. Am J Sports Med. 2004;32(7):1736–42.

    Article  PubMed  Google Scholar 

  72. Sides SD, et al. Bending stiffness and pull-out strength of tapered, variable pitch screws, and 6.5-mm cancellous screws in acute Jones fractures. Foot Ankle Int. 2006;27(10):821–5.

    Article  PubMed  Google Scholar 

  73. Ekstrand J, van Dijk CN. Fifth metatarsal fractures among male professional footballers: a potential career-ending disease. Br J Sports Med. 2013;47(12):754–8.

    Article  PubMed  Google Scholar 

  74. Lee KT, et al. The plantar gap: another prognostic factor for fifth metatarsal stress fracture. Am J Sports Med. 2011;39(10):2206–11.

    Article  PubMed  Google Scholar 

  75. Miller D, et al. Early return to playing professional football following fixation of 5th metatarsal stress fractures may lead to delayed union but does not increase the risk of long-term non-union. Knee Surg Sports Traumatol Arthrosc. 2019;27(9):2796–801.

    Article  PubMed  Google Scholar 

  76. Weel H, et al. The effect of concentrated bone marrow aspirate in operative treatment of fifth metatarsal stress fractures; a double-blind randomized controlled trial. BMC Musculoskelet Disord. 2015;16:211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Rosenberg GA, Sferra JJ. Treatment strategies for acute fractures and nonunions of the proximal fifth metatarsal. J Am Acad Orthop Surg. 2000;8(5):332–8.

    Article  CAS  PubMed  Google Scholar 

  78. Chuckpaiwong B, et al. Distinguishing Jones and proximal diaphyseal fractures of the fifth metatarsal. Clin Orthop Relat Res. 2008;466(8):1966–70.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kavanaugh JH, Brower TD, Mann RV. The Jones fracture revisited. J Bone Joint Surg Am. 1978;60(6):776–82.

    Article  CAS  PubMed  Google Scholar 

  80. Begly JP, et al. Return to play and performance after Jones fracture in National Basketball Association Athletes. Sports Health. 2016;8(4):342–6.

    Article  PubMed  Google Scholar 

  81. Lareau CR, Hsu AR, Anderson RB. Return to play in National Football League Players after Operative Jones Fracture Treatment. Foot Ankle Int. 2016;37(1):8–16.

    Article  PubMed  Google Scholar 

  82. Bennell KL, et al. The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  83. Brukner P, et al. Stress fractures: a review of 180 cases. Clin J Sport Med. 1996;6(2):85–9.

    Article  CAS  PubMed  Google Scholar 

  84. Saxena A, et al. Navicular stress fracture outcomes in athletes: analysis of 62 injuries. J Foot Ankle Surg. 2017;56(5):943–8.

    Article  PubMed  Google Scholar 

  85. Gross CE, Nunley JA 2nd. Navicular stress fractures. Foot Ankle Int. 2015;36(9):1117–22.

    Article  PubMed  Google Scholar 

  86. Waugh W. The ossification and vascularisation of the tarsal navicular and their relation to Kohler’s disease. J Bone Joint Surg Br. 1958;40-b(4):765–77.

    Article  CAS  PubMed  Google Scholar 

  87. McKeon KE, et al. Intraosseous and extraosseous arterial anatomy of the adult navicular. Foot Ankle Int. 2012;33(10):857–61.

    Article  PubMed  Google Scholar 

  88. Khan KM, et al. Tarsal navicular stress fracture in athletes. Sports Med. 1994;17(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  89. Torg JS, et al. Stress fractures of the tarsal navicular. A retrospective review of twenty-one cases. J Bone Joint Surg Am. 1982;64(5):700–12.

    Article  CAS  PubMed  Google Scholar 

  90. Burne SG, et al. Tarsal navicular stress injury: long-term outcome and clinicoradiological correlation using both computed tomography and magnetic resonance imaging. Am J Sports Med. 2005;33(12):1875–81.

    Article  PubMed  Google Scholar 

  91. Mann JA, Pedowitz DI. Evaluation and treatment of navicular stress fractures, including nonunions, revision surgery, and persistent pain after treatment. Foot Ankle Clin. 2009;14(2):187–204.

    Article  PubMed  Google Scholar 

  92. Torg JS, et al. Management of tarsal navicular stress fractures: conservative versus surgical treatment: a meta-analysis. Am J Sports Med. 2010;38(5):1048–53.

    Article  PubMed  Google Scholar 

  93. Fowler JR, et al. The non-surgical and surgical treatment of tarsal navicular stress fractures. Sports Med. 2011;41(8):613–9.

    Article  PubMed  Google Scholar 

  94. Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg. 2000;39(2):96–103.

    Article  CAS  PubMed  Google Scholar 

  95. Saxena A, Fullem B. Navicular stress fractures: a prospective study on athletes. Foot Ankle Int. 2006;27(11):917–21.

    Article  PubMed  Google Scholar 

  96. McCormick JJ, et al. Clinical and computed tomography evaluation of surgical outcomes in tarsal navicular stress fractures. Am J Sports Med. 2011;39(8):1741–8.

    Article  PubMed  Google Scholar 

  97. Dodson NB, Dodson EE, Shromoff PJ. Imaging strategies for diagnosing calcaneal and cuboid stress fractures. Clin Podiatr Med Surg. 2008;25(2):183–201. vi

    Article  PubMed  Google Scholar 

  98. Greaney RB, et al. Distribution and natural history of stress fractures in U.S. Marine recruits. Radiology. 1983;146(2):339–46.

    Article  CAS  PubMed  Google Scholar 

  99. Posinkovic B, Pavlovic M. [Stress fractures]. Lijec Vjesn. 1989;111(6–7):228–31.

    Google Scholar 

  100. Pester S, Smith PC. Stress fractures in the lower extremities of soldiers in basic training. Orthop Rev. 1992;21(3):297–303.

    CAS  PubMed  Google Scholar 

  101. Clements JR, Dijour F, Leong W. Surgical management navicular and cuboid fractures. Clin Podiatr Med Surg. 2018;35(2):145–59.

    Article  PubMed  Google Scholar 

  102. Creighton R, Sonoga A, Gordon G. Stress fracture of the tarsal middle cuneiform bone. A case report. J Am Podiatr Med Assoc. 1990;80(9):489–95.

    Article  CAS  PubMed  Google Scholar 

  103. Lau H, Dreyer MA. Cuboid stress fractures. In: StatPearls. Treasure Island, FL: StatPearls Publishing StatPearls Publishing LLC; 2019.

    Google Scholar 

  104. Roberts L, et al. Cuboid edema syndrome following fixation of proximal fifth metatarsal fractures in professional athletes. Foot Ankle Spec. 2019:1938640019857798.

    Google Scholar 

  105. Unnithan S, Thomas J. Not all ankle injuries are ankle sprains – case of an isolated cuboid stress fracture. Clin Pract. 2018;8(3):1093.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hermel MB, Gershon-Cohen J. The nutcracker fracture of the cuboid by indirect violence. Radiology. 1953;60(6):850–4.

    Article  CAS  PubMed  Google Scholar 

  107. Chen JB. Cuboid stress fracture. A case report. J Am Podiatr Med Assoc. 1993;83(3):153–5.

    Article  CAS  PubMed  Google Scholar 

  108. Franco M, et al. An uncommon cause of foot pain: the cuboid insufficiency stress fracture. Joint Bone Spine. 2005;72(1):76–8.

    Article  PubMed  Google Scholar 

  109. Goldman F. Fractures of the midfoot. Clin Podiatry. 1985;2(2):259–85.

    CAS  PubMed  Google Scholar 

  110. Barp EA, et al. Subchondroplasty of the foot: two case reports. J Foot Ankle Surg. 2019;

    Google Scholar 

  111. Mahler P, Fickler P. Case report: cuboid stress fracture. Excel. 1993;8:147–8.

    Google Scholar 

  112. Beaman DN, et al. Cuboid stress fractures: a report of two cases. Foot Ankle. 1993;14(9):525–8.

    Article  CAS  PubMed  Google Scholar 

  113. Matsumoto A, Nishiyama T, Kimura S, Masuko H. A case of cuboid stress fracture of the right foot. J Kansai Clin Sports Med Sci. 1996;6(11):3.

    Google Scholar 

  114. Battaglia H, Simmen HP, Meier W. Stress fracture of the cuboid bone: an easy to treat rarity. Swiss Surg. 2002;8:3–6.

    Article  CAS  PubMed  Google Scholar 

  115. Kawahara T, Miyahara K, Makino Y. A case of cuboid stress fracture in a senior high school high jump athlete. J Japan Orthopaed Soc Knee Arthroscop Sports Med. 2010;35:238.

    Google Scholar 

  116. Hagino T, et al. A case of cuboid bone stress fracture in a senior high school rugby athlete. Asia Pac J Sports Med Arthros Rehabil Technol. 2014;1(4):132–5.

    Google Scholar 

  117. Mayer SW, et al. Stress fractures of the foot and ankle in athletes. Sports Health. 2014;6(6):481–91.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bui-Mansfield LT, Thomas WR. Magnetic resonance imaging of stress injury of the cuneiform bones in patients with plantar fasciitis. J Comput Assist Tomogr. 2009;33(4):593–6.

    Article  PubMed  Google Scholar 

  119. Meurman KO, Elfving S. Stress fracture of the cuneiform bones. Br J Radiol. 1980;53(626):157–60.

    Article  CAS  PubMed  Google Scholar 

  120. Paisan G, et al. Non-traumatic isolated medial cuneiform fracture: a unique mechanism of a rare injury. SAGE Open Med Case Rep. 2017;5:2050313X17744483.

    PubMed  PubMed Central  Google Scholar 

  121. Vukic T, Ivkovic A, Jankovic S. Stress fracture of the lateral cuneiform bone: a case report. J Am Podiatr Med Assoc. 2013;103(4):337–9.

    Article  PubMed  Google Scholar 

  122. Williams AA, DesJardins CE, Wilckens JH. Stress fracture of the lateral cuneiform bone in a lacrosse player. JBJS Case Connect. 2013;3(2):e31–e3.

    Article  PubMed  Google Scholar 

  123. Welck MJ, et al. Stress fractures of the foot and ankle. Injury. 2017;48(8):1722–6.

    Article  CAS  PubMed  Google Scholar 

  124. McBryde AM Jr, Anderson RB. Sesamoid foot problems in the athlete. Clin Sports Med. 1988;7(1):51–60.

    Article  PubMed  Google Scholar 

  125. Boike A, Schnirring-Judge M, McMillin S. Sesamoid disorders of the first metatarsophalangeal joint. Clin Podiatr Med Surg. 2011;28(2):269–85. vii

    Article  PubMed  Google Scholar 

  126. Rodeo SA, et al. Diastasis of bipartite sesamoids of the first metatarsophalangeal joint. Foot Ankle. 1993;14(8):425–34.

    Article  CAS  PubMed  Google Scholar 

  127. Aper RL, Saltzman CL, Brown TD. The effect of hallux sesamoid resection on the effective moment of the flexor hallucis brevis. Foot Ankle Int. 1994;15(9):462–70.

    Article  CAS  PubMed  Google Scholar 

  128. Ribbans WJ, Hintermann B. Hallucal sesamoid fractures in athletes: diagnosis and treatment. Sports Orthopaed Traumatol. 2016;32(3):295–303.

    Article  Google Scholar 

  129. Richardson EG. Hallucal sesamoid pain: causes and surgical treatment. J Am Acad Orthop Surg. 1999;7(4):270–8.

    Article  CAS  PubMed  Google Scholar 

  130. Saxena A, Krisdakumtorn T. Return to activity after sesamoidectomy in athletically active individuals. Foot Ankle Int. 2003;24(5):415–9.

    Article  PubMed  Google Scholar 

  131. Anderson RB, McBryde AM Jr. Autogenous bone grafting of hallux sesamoid nonunions. Foot Ankle Int. 1997;18(5):293–6.

    Article  CAS  PubMed  Google Scholar 

  132. Blundell CM, Nicholson P, Blackney MW. Percutaneous screw fixation for fractures of the sesamoid bones of the hallux. J Bone Joint Surg Br. 2002;84(8):1138–41.

    Article  CAS  PubMed  Google Scholar 

  133. Mittlmeier T, Haar P. Sesamoid and toe fractures. Injury. 2004;35 Suppl 2:Sb87–97.

    Article  PubMed  Google Scholar 

  134. Pagenstert GI, Valderrabano V, Hintermann B. Medial sesamoid nonunion combined with hallux valgus in athletes: a report of two cases. Foot Ankle Int. 2006;27(2):135–40.

    Article  PubMed  Google Scholar 

  135. Robertson GAJ, Goffin JS, Wood AM. Return to sport following stress fractures of the great toe sesamoids: a systematic review. Br Med Bull. 2017;122(1):135–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana Bogunovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hicks, J.J., Vyas, P., Backus, J., Bogunovic, L. (2020). Stress Fractures of the Midfoot and Forefoot. In: Miller, T.L., Kaeding, C.C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-46919-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46919-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46918-4

  • Online ISBN: 978-3-030-46919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics