Skip to main content

Stress Fractures of the Tibia

  • Chapter
  • First Online:
Stress Fractures in Athletes

Abstract

The tibia is the most common site for developing a stress fracture. Tensile forces created by the gastrocnemius and soleus musculature and relative hypovascularity lead to a high rate of nonunion, delayed union, and stress fracture at the anterior tibial cortex. Stress fractures occur more commonly at the posterior medial cortex of the tibial diaphysis but heal more readily due to compressive forces at that area. Risk factors for a tibial stress fracture include prior stress fracture, recent increases in training intensity and/or duration, improper training technique or equipment, the female athlete triad, calcium and vitamin D deficiency, low body mass index, and inadequate caloric intake. Athletes with stress fractures present with point tenderness at the site of the injury along with pain with single leg stance, hop test, and fulcrum test. Radiographs are the initial evaluation tool for stress fractures, though they are commonly negative unless the injury is chronic or severe. Magnetic resonance imaging has shown to be highly sensitive and specific for stress fractures and the most predictive of time away from sport. Relative rest from the causative activity with proper nutritional and biomechanical support is recommended for low-grade stress injuries of the posteromedial tibia. Surgical stabilization with a reamed intramedullary rod or anterior lateral tension-band plate has shown success in treating a chronic anterior cortex tibial stress fracture known as the “dreaded black line.” These procedures have produced high union rates, low complication rates, and early return to sport, though hardware irritation is common.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brukner P, Bradshaw C, Khan KM, White S, Crossley K. Stress fractures: a review of 180 cases. Clin J Sport Med. 1996;6(2):85–9.

    CAS  Google Scholar 

  2. Miller TL, Jamieson M, Everson S, Siegel C. Expected time to return to athletic participation after stress fracture in Division I collegiate athletes. Sports Health. 2018;10(4):340–4.

    Google Scholar 

  3. Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG. Stress fractures in athletes. A study of 320 cases. Am J Sports Med. 1987;15(1):46–58.

    CAS  Google Scholar 

  4. Niva MH, Mattila VM, Kiuru MJ, Pihlajamaki HK. Bone stress injuries are common in female military trainees: a preliminary study. Clin Orthop Relat Res. 2009;467(11):2962–9.

    PubMed  PubMed Central  Google Scholar 

  5. Goh JC, Mech AM, Lee EH, Ang EJ, Bayon P, Pho RW. Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res. 1992;279:223–8.

    Google Scholar 

  6. Lafortune MA, Cavanagh PR, Sommer HJ 3rd, Kalenak A. Three-dimensional kinematics of the human knee during walking. J Biomech. 1992;25(4):347–57.

    CAS  Google Scholar 

  7. Ramsey PL, Hamilton W. Changes in tibiotalar area of contact caused by lateral talar shift. J Bone Joint Surg Am. 1976;58(3):356–7.

    CAS  Google Scholar 

  8. Beck BR. Tibial stress injuries. An aetiological review for the purposes of guiding management. Sports Med. 1998;26(4):265–79.

    CAS  Google Scholar 

  9. Galbraith RM, Lavallee ME. Medial tibial stress syndrome: conservative treatment options. Curr Rev Musculoskelet Med. 2009;2(3):127–33.

    PubMed  PubMed Central  Google Scholar 

  10. Kaeding CC, Miller T. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am. 2013;95(13):1214–20.

    Google Scholar 

  11. Jamieson M, Schroeder A, Campbell J, Seigel C, Everson S, Miller TL. Time to return to running after tibial stress fracture in female Division I collegiate track and field. Curr Orthop Pract. 2017;28(4):393–7.

    Google Scholar 

  12. Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8(6):344–53.

    CAS  Google Scholar 

  13. Porrino JA Jr, Kohl CA, Taljanovic M, Rogers LF. Diagnosis of proximal femoral insufficiency fractures in patients receiving bisphosphonate therapy. AJR Am J Roentgenol. 2010;194(4):1061–4.

    Google Scholar 

  14. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    Google Scholar 

  15. Carter CW, Ireland ML, Johnson AE, Levine WN, Martin S, Bedi A, et al. Sex-based differences in common sports injuries. J Am Acad Orthop Surg. 2018;26(13):447–54.

    Google Scholar 

  16. Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, et al. Association of the Female Athlete Triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.

    Google Scholar 

  17. Hadid A, Epstein Y, Shabshin N, Gefen A. Biomechanical model for stress fracture-related factors in athletes and soldiers. Med Sci Sports Exerc. 2018;50(9):1827–36.

    Google Scholar 

  18. Beck BR, Rudolph K, Matheson GO, Bergman AG, Norling TL. Risk factors for tibial stress injuries: a case-control study. Clin J Sport Med. 2015;25(3):230–6.

    Google Scholar 

  19. Bickley L, Szilagyi P. In: Bickley LS, editor. Bates’ guide to physical examination and history taking. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  20. Yuksel O, Ozgurbuz C, Ergun M, Islegen C, Taskiran E, Denerel N, et al. Inversion/eversion strength dysbalance in patients with medial tibial stress syndrome. J Sports Sci Med. 2011;10(4):737–42.

    PubMed  PubMed Central  Google Scholar 

  21. Brunet ME, Cook SD, Brinker MR, Dickinson JA. A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fitness. 1990;30(3):307–15.

    CAS  Google Scholar 

  22. Lesho EP. Can tuning forks replace bone scans for identification of tibial stress fractures? Mil Med. 1997;162(12):802–3.

    CAS  Google Scholar 

  23. Moore MB. The use of a tuning fork and stethoscope to identify fractures. J Athl Train. 2009;44(3):272–4.

    PubMed  PubMed Central  Google Scholar 

  24. Allen CS, Flynn TW, Kardouni JR, Hemphill MH, Schneider CA, Pritchard AE, et al. The use of a pneumatic leg brace in soldiers with tibial stress fractures--a randomized clinical trial. Mil Med. 2004;169(11):880–4.

    Google Scholar 

  25. Clement DB, Ammann W, Taunton JE, Lloyd-Smith R, Jesperson D, McKay H, et al. Exercise-induced stress injuries to the femur. Int J Sports Med. 1993;14(6):347–52.

    CAS  Google Scholar 

  26. Batt ME, Ugalde V, Anderson MW, Shelton DK. A prospective controlled study of diagnostic imaging for acute shin splints. Med Sci Sports Exerc. 1998;30(11):1564–71.

    CAS  Google Scholar 

  27. Peeler J, Anderson J. Reliability of the Thomas test for assessing range of motion about the hip. Phys Ther Sport. 2007;8(1):14–21.

    Google Scholar 

  28. Ober F. The role of the iliotibial band and fascia lata as a factor in the causation of low-back disabilities and disabilities in sciatica. J Bone Joint Surg Am. 1936;18:105–10.

    Google Scholar 

  29. Silfverskiold N. Reduction of the uncrossed two-joints muscles of the leg to one-joint muscles in spastic conditions. Acta Chir Scand. 1924;56:315–30.

    Google Scholar 

  30. Ishibashi Y, Okamura Y, Otsuka H, Nishizawa K, Sasaki T, Toh S. Comparison of scintigraphy and magnetic resonance imaging for stress injuries of bone. Clin J Sport Med. 2002;12(2):79–84.

    Google Scholar 

  31. Clanton T, Solcher B, Baxter D. Treatment of anterior midtibial stress fractures. Sports Med Arthrosc. 1994;2(4):293–300.

    Google Scholar 

  32. Varner KE, Younas SA, Lintner DM, Marymont JV. Chronic anterior midtibial stress fractures in athletes treated with reamed intramedullary nailing. Am J Sports Med. 2005;33(7):1071–6.

    Google Scholar 

  33. Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D, et al. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235(2):553–61.

    Google Scholar 

  34. Sloan AV, Martin JR, Li S, Li J. Parathyroid hormone and bisphosphonate have opposite effects on stress fracture repair. Bone. 2010;47(2):235–40.

    CAS  Google Scholar 

  35. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76(1):26–34.

    CAS  Google Scholar 

  36. Naruse K, Sekiya H, Harada Y, Iwabuchi S, Kozai Y, Kawamata R, et al. Prolonged endochondral bone healing in senescence is shortened by low-intensity pulsed ultrasound in a manner dependent on COX-2. Ultrasound Med Biol. 2010;36(7):1098–108.

    Google Scholar 

  37. Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res. 2004;418:253–9.

    Google Scholar 

  38. Sant’Anna EF, Leven RM, Virdi AS, Sumner DR. Effect of low intensity pulsed ultrasound and BMP-2 on rat bone marrow stromal cell gene expression. J Orthop Res. 2005;23(3):646–52.

    Google Scholar 

  39. Freeman TA, Patel P, Parvizi J, Antoci V Jr, Shapiro IM. Micro-CT analysis with multiple thresholds allows detection of bone formation and resorption during ultrasound-treated fracture healing. J Orthop Res. 2009;27(5):673–9.

    Google Scholar 

  40. Sena K, Leven RM, Mazhar K, Sumner DR, Virdi AS. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol. 2005;31(5):703–8.

    Google Scholar 

  41. Lai CH, Chen SC, Chiu LH, Yang CB, Tsai YH, Zuo CS, et al. Effects of low-intensity pulsed ultrasound, dexamethasone/TGF-beta1 and/or BMP-2 on the transcriptional expression of genes in human mesenchymal stem cells: chondrogenic vs. osteogenic differentiation. Ultrasound Med Biol. 2010;36(6):1022–33.

    Google Scholar 

  42. Rue JP, Armstrong DW 3rd, Frassica FJ, Deafenbaugh M, Wilckens JH. The effect of pulsed ultrasound in the treatment of tibial stress fractures. Orthopedics. 2004;27(11):1192–5.

    Google Scholar 

  43. Swenson EJ Jr, DeHaven KE, Sebastianelli WJ, Hanks G, Kalenak A, Lynch JM. The effect of a pneumatic leg brace on return to play in athletes with tibial stress fractures. Am J Sports Med. 1997;25(3):322–8.

    Google Scholar 

  44. Rome K, Handoll HH, Ashford R. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev. 2005;(2):CD000450.

    Google Scholar 

  45. Matheson GO, Brukner P. Pneumatic leg brace after tibial stress fracture for faster return to play. Clin J Sport Med. 1998;8(1):66.

    CAS  Google Scholar 

  46. Taki M, Iwata O, Shiono M, Kimura M, Takagishi K. Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am J Sports Med. 2007;35(7):1188–92.

    Google Scholar 

  47. Beals RK, Cook RD. Stress fractures of the anterior tibial diaphysis. Orthopedics. 1991;14(8):869–75.

    CAS  Google Scholar 

  48. Batt ME, Kemp S, Kerslake R. Delayed union stress fractures of the anterior tibia: conservative management. Br J Sports Med. 2001;35(1):74–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Borens O, Sen MK, Huang RC, Richmond J, Kloen P, Jupiter JB, et al. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes: a report of 4 cases. J Orthop Trauma. 2006;20(6):425–30.

    Google Scholar 

  50. Chaudhry ZS, Raikin SM, Harwood MI, Bishop ME, Ciccotti MG, Hammoud S. Outcomes of surgical treatment for anterior tibial stress fractures in athletes: a systematic review. Am J Sports Med. 2019;47(1):232–40.

    Google Scholar 

  51. Court-Brown CM, Gustilo T, Shaw AD. Knee pain after intramedullary tibial nailing: its incidence, etiology, and outcome. J Orthop Trauma. 1997;11(2):103–5.

    CAS  Google Scholar 

  52. Shelbourne KD, Fisher DA, Rettig AC, McCarroll JR. Stress fractures of the medial malleolus. Am J Sports Med. 1988;16(1):60–3.

    CAS  Google Scholar 

  53. Miller TL, Kaeding CC, Rodeo SA. Emerging options for biologic enhancement of stress fracture healing in athletes. J Am Acad Orthop Surg. 2020;28(1):1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harris, J.D., Varner, K.E., Miller, T.L. (2020). Stress Fractures of the Tibia. In: Miller, T.L., Kaeding, C.C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-46919-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46919-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46918-4

  • Online ISBN: 978-3-030-46919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics