Skip to main content

Patrolling and Surveillance Games

  • Chapter
  • First Online:
Cyber-Security in Critical Infrastructures

Abstract

Patrolling and surveillance games both deal with a chasing-evading situation of an adversary trying to escape detection by either a mobile defender (patrolling) or a fixed defender (surveillance). Both kinds of games are played on graphs as abstract models of an infrastructure, and we review a variety of closed-form solutions for optimal patrolling in different classes of graph topologies. Applications include patrolling along lines (borders, pipelines, or similar), harbors (tree-structured graphs), and large geographic areas in general (planar graphs and maps). For surveillance and patrolling, we give hints on how to estimate the necessary resources, and how to include imperfectness and uncertainty, related to the detection capabilities, but also the chances of the adversary escaping the view of the patroller or surveillance. In complex terrain, we will discuss the use of simulation and empirical games (over real-valued and stochastic orders).

Under observation, we act less free, which means we effectively are less free. E. Snowden

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso NZ, Terol PZ (1993) Some games of search on a lattice. Naval Res Logist 40(4):525–541. https://doi.org/10.1002/1520-6750(199306)40:4<525::AID-NAV3220400407>3.0.CO;2-B

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpern S, Asic M (1985) The search value of a network. Networks 15(2):229–238. https://doi.org/10.1002/net.3230150208

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern S, Fokkink R (2014) Accumulation games on graphs. Networks 64(1):40–47. https://doi.org/10.1002/net.21555

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpern S, Fokkink R, Kikuta K (2010) On Ruckle’s conjecture on accumulation games. SIAM J Control Optim 48(8):5073–5083. https://doi.org/10.1137/080741926

    Article  MathSciNet  MATH  Google Scholar 

  5. Alpern S, Morton A, Papadaki K (2011) Patrolling games. Oper Res 59(5):1246–1257. https://doi.org/10.1287/opre.1110.0983

    Article  MathSciNet  MATH  Google Scholar 

  6. Alpern S, Lidbetter T, Morton A, Papadaki K (2016) Patrolling a pipeline. In: Zhu Q, Alpcan T, Panaousis E, Tambe M, Casey W (eds) Decision and game theory for security. Lecture notes in computer science. Springer International Publishing, Cham, pp 129–138

    Google Scholar 

  7. Alpern S, Lidbetter T, Papadaki K (2017) Periodic patrols on the line and other networks. ArXiv:1705.10399v1 [math.OC]

    Google Scholar 

  8. Appel K, Haken W (1989) Every planar map is four colorable, vol 98. American Mathematical Society, Providence. https://doi.org/10.1090/conm/098

  9. Basak A, Fang F, Nguyen TH, Kiekintveld C (2016) Combining graph contraction and strategy generation for green security games. In: Zhu Q, Alpcan T, Panaousis E, Tambe M, Casey W (eds) Decision and game theory for security. Lecture notes in computer science. Springer International Publishing, Cham, pp 251–271

    MATH  Google Scholar 

  10. Bodor R, Drenner A, Schrater P, Papanikolopoulos N (2007) Optimal camera placement for automated surveillance tasks. J Intell Robot Syst 50(3):257–295. https://doi.org/10.1007/s10846-007-9164-7

    Article  Google Scholar 

  11. Chvátal V (1975) A combinatorial theorem in plane geometry. J Combin Theory Ser B 18:39–41

    Article  MathSciNet  MATH  Google Scholar 

  12. Cormen TH, Leiserson CE, Rivest RL (1994) Introduction to algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  13. Debaque B, Jedidi R, Prevost D (2009) Optimal video camera network deployment to support security monitoring. In: 12th international conference on information fusion, 2009. IEEE, Piscataway, pp 1730–1736

    Google Scholar 

  14. Edmonds J, Johnson EL (1973) Matching, Euler tours and the Chinese postman. Math Program 5(1):88–124. https://doi.org/10.1007/BF01580113

    Article  MathSciNet  MATH  Google Scholar 

  15. Fisk S (1978) A short proof of Chvátal’s Watchman theorem. J Combin Theory Ser B 24(3):374. https://doi.org/10.1016/0095-8956(78)90059-X

    Article  MathSciNet  MATH  Google Scholar 

  16. Fox CR, Bardolet D, Lieb D (2005) Partition dependence in decision analysis, resource allocation, and consumer choice. In: Zwick R, Rapoport A (eds) Experimental business research. Springer, Dordrecht/Berlin, pp 229–251. https://doi.org/10.1007/0-387-24244-9_10

    Chapter  Google Scholar 

  17. Garey MR, Johnson DS (1979) Computers and intractability. Freeman, New York

    MATH  Google Scholar 

  18. Hörster E, Lienhart R (2006) On the optimal placement of multiple visual sensors. In: Aggarwal JK, Cucchiara R, Prati A (eds) Proceedings of the 4th ACM international workshop on video surveillance and sensor networks – VSSN’06, p 111. ACM Press, New York. https://doi.org/10.1145/1178782.1178800

    Google Scholar 

  19. Indu S, Chaudhury S, Mittal N, Bhattacharyya A (2009) Optimal sensor placement for surveillance of large spaces. In: 2009 third ACM/IEEE international conference on distributed smart cameras (ICDSC). IEEE, pp 1–8. https://doi.org/10.1109/ICDSC.2009.5289398

  20. Kikuta K, Ruckle WH (2002) Continuous accumulation games on discrete locations. Naval Res Logist 49(1):60–77. https://doi.org/10.1002/nav.1048

    Article  MathSciNet  MATH  Google Scholar 

  21. O’Rourke J (1987) Art gallery theorems and algorithms. The international series of monographs on computer science, vol 3. Oxford University Press, New York

    Google Scholar 

  22. Papadaki K, Alpern S, Lidbetter T, Morton A (2016) Patrolling a border. Oper Res 64(6):1256–1269. https://doi.org/10.1287/opre.2016.1511

    Article  MathSciNet  MATH  Google Scholar 

  23. Pita J, Tambe M, Kiekintveld C, Cullen S, Steigerwald E (2011) GUARDS – innovative application of game theory for national airport security. In: IJCAI 2011, pp 2710–2715 . https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-451

    Google Scholar 

  24. Rass S, Alshawish A, Abid MA, Schauer S, Zhu Q, de Meer H (2017) Physical intrusion games – optimizing surveillance by simulation and game theory. IEEE Access 5:8394–8407. https://doi.org/10.1109/ACCESS.2017.2693425

    Article  Google Scholar 

  25. Rass S, König S, Schauer S (2017) On the cost of game playing: how to control the expenses in mixed strategies. In: Decision and game theory for security. Springer, Cham, Switzerland [S.l.], pp 494–505

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rass, S., Schauer, S., König, S., Zhu, Q. (2020). Patrolling and Surveillance Games. In: Cyber-Security in Critical Infrastructures. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-46908-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46908-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46907-8

  • Online ISBN: 978-3-030-46908-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics