Skip to main content

Crystallography of Metal Surfaces and Adsorbed Layers

  • Chapter
Springer Handbook of Surface Science

Abstract

Crystallography involves the determination of atom positions with accuracy better than a few percent of interatomic bond lengths. The first part of this chapter describes the main experimental techniques that are used for surface crystallography on metal surfaces: low-energy electron diffraction, photoelectron diffraction, surface x-ray diffraction, and the x-ray standing wave technique. The second part discusses common features and trends found in the structures of metal surfaces with and without adsorbates, and presents representative examples of experimentally determined surface structures. These examples illustrate how the interplay between vertical (adsorbate–substrate) and lateral (adsorbate–adsorbate) interactions of different strengths determines the arrangement of atoms at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • D.P. Woodruff: Modern Techniques of Surface Science (Cambridge Univ. Press, Cambridge 2016)

    Google Scholar 

  • G. Friedbacher, H. Bubert: Surface and Thin Film Analysis—A Compendium of Principles, Instrumentation, and Applications (Wiley-VCH, Weinheim 2011)

    Google Scholar 

  • R.L. Park, H.H. Madden: Annealing changes on the (100) surface of palladium and their effect on CO adsorption, Surf. Sci. 11, 188 (1968)

    ADS  Google Scholar 

  • E.A. Wood: Vocabulary of surface crystallography, J. Appl. Phys. 35, 1306 (1964)

    ADS  Google Scholar 

  • S.M. Barlow, R. Raval: Complex organic molecules at metal surfaces: Bonding, organisation and chirality, Surf. Sci. Rep. 50, 201–341 (2003)

    ADS  Google Scholar 

  • G. Held, J. Schuler, W. Sklarek, H.-P. Steinrück: Determination of adsorption sites of pure and coadsorbed CO on Ni(111) by high resolution x‑ray photoelectron spectroscopy, Surf. Sci. 398, 154–171 (1998)

    ADS  Google Scholar 

  • J.B. Pendry: Low Energy Electron Diffraction (Academic Press, New York 1974)

    Google Scholar 

  • L.J. Clarke: Surface Crystallography—An Introduction to Low Energy Electron Diffraction (Wiley, New York 1985)

    Google Scholar 

  • M.A. Van Hove, W.H. Weinberg, C.-M. Chan (Eds.): Low-Energy Electron Diffraction (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  • C.J. Davisson, L.H. Germer: Diffraction of electrons by a crystal of nickel, Phys. Rev. 30, 705 (1927)

    ADS  Google Scholar 

  • J.B. Pendry: Reliability factors for LEED calculations, J. Phys. C Solid State Phys. 13, 937–944 (1980)

    ADS  Google Scholar 

  • M.A. Van Hove, S.Y. Tong (Eds.): Surface Crystallography by LEED (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  • K. Heinz, S. Müller, L. Hammer: Crystallography of ultrathin iron, cobalt and nickel films grown epitaxially on copper, J. Phys. Condens. Matter 11, 9437 (1999)

    ADS  Google Scholar 

  • W. Braun, H.-P. Steinrück, G. Held: The surface geometry of carbon monoxide and oxygen co-adsorbed on Ni{111}, Z. Phys. Chem. 218, 915 (2004)

    Google Scholar 

  • K. Heinz: Geometrical and chemical restructuring of clean metal surfaces as retrieved by LEED, Surf. Sci. 299/300, 433 (1994)

    ADS  Google Scholar 

  • K. Heinz, L. Hammer, S. Müller: The power of joint application of LEED and DFT in quantitative surface structure determination, J. Phys. Condens. Matter 20, 304204 (2008)

    Google Scholar 

  • H. Over: Crystallographic study of interaction between adspecies on metal surfaces, Prog. Surf. Sci. 58, 249–376 (1998)

    ADS  Google Scholar 

  • A. Kahn: 30 years of atomic and electronic-structure determination of surfaces of tetrahedrally coordinated compound semiconductors, Surf. Sci. 299/300, 469 (1994)

    ADS  Google Scholar 

  • C.S. Fadley: The study of surface structures by photoelectron diffraction and Auger electron diffraction. In: Synchrotron Radiation Research. Advances in Surface and Interface Science Techniques, ed. by R.Z. Bachrach (Plenum, New York 1992) pp. 421–518

    Google Scholar 

  • H.P. Bonzel: Studies of adsorbed molecules by x‑ray photoelectron diffraction (XPD), Prog. Surf. Sci. 42, 219–229 (1993)

    ADS  Google Scholar 

  • D.P. Woodruff, A.M. Bradshaw: Adsorbate structure determination on surfaces using photoelectron diffraction, Rep. Prog. Phys. 57, 1029–1080 (1994)

    ADS  Google Scholar 

  • G. Held: Photoelectron spectroscopy of metal surfaces for potential heterogeneous catalysis. In: Techniques, Materials and Applications, Spectroscopic Properties of Inorganic and Organometallic Compounds, Vol. 42, ed. by J. Yarwood, R. Douthwaite, S. Duckett (Royal Society of Chemistry, London 2011) pp. 1–33

    Google Scholar 

  • D.P. Woodruff: Adsorbate structure determination using photoelectron diffraction: Methods and applications, Surf. Sci. Rep. 62, 1–38 (2007)

    ADS  Google Scholar 

  • T. Greber, J. Wider, E. Wetli, J. Osterwalder: X‑Ray photoelectron diffraction in the backscattering geometry: A key to adsorption sites and bond lengths at surfaces, Phys. Rev. Lett. 81, 1654–1657 (1998)

    ADS  Google Scholar 

  • R. Fasel, P. Aebi, R.G. Agostino, D. Naumović, J. Osterwalder, A. Santaniello, L. Schlapbach: Orientation of adsorbed C60 molecules determined via x‑ray photoelectron diffraction, Phys. Rev. Lett. 76, 4733 (1996)

    ADS  Google Scholar 

  • T. Greber, O. Raetzo, T.J. Kreutz, P. Schwaller, W. Deichmann, E. Wetli, J. Osterwalder: A photoelectron spectrometer for k-space mapping above the Fermi level, Rev. Sci. Intrum. 68, 4549–4554 (1997)

    ADS  Google Scholar 

  • Y.J. Kim, C. Westphal, R.X. Ynzunza, Z. Wang, H.C. Galloway, M. Salmeron, M.A. Van Hove, C.S. Fadley: The growth of iron oxide films on Pt(111): A combined XPD, STM, and LEED study, Surf. Sci. 416, 68–111 (1998)

    ADS  Google Scholar 

  • R. Fasel, J. Wider, C. Quitmann, K.-H. Ernst, T. Greber: Determination of the absolute chirality of adsorbed molecules, Angew. Chem. Int. Ed. 43, 2853–2856 (2004)

    Google Scholar 

  • T. Greber, Z. Sljivancanin, J. Wider, B. Hammer: Chiral recognition of organic molecules by atomic kinks on surfaces, Phys. Rev. Lett. 96, 56103 (2006)

    ADS  Google Scholar 

  • M. Treier, P. Ruffieux, R. Fasel, F. Nolting, S. Yang, L. Dunsch, T. Greber: Looking inside an endohedral fullerene: Inter- and intramolecular ordering of Dy3N@C80 (Ih) on Cu(111), Phys. Rev. B 80, 81403 (2009)

    ADS  Google Scholar 

  • K.-M. Schindler, V. Fritzsche, M.C. Asensio, P. Gardner, D.E. Ricken, A.W. Robinson, A.M. Bradshaw, D.P. Woodruff, J.C. Conesa, A.R. González-Elipe: Structural determination of a molecular adsorbate by photoelectron diffraction: Ammonia on Ni{111}, Phys. Rev. B 46, 4836–4843 (1992)

    ADS  Google Scholar 

  • F. Allegretti, S. O'Brien, M. Polcik, D.I. Sayago, D.P. Woodruff: Adsorption bond length for H2O on TiO2(110): A key parameter for theoretical understanding, Phys. Rev. Lett. 95(22), 226104 (2005)

    ADS  Google Scholar 

  • F. Allegretti, S. O'Brien, M. Polcik, D.I. Sayago, D.P. Woodruff: Quantitative determination of the local structure of H2O on TiO2(1 1 0) using scanned-energy mode photoelectron diffraction, Surf. Sci. 600, 1487–1496 (2006)

    ADS  Google Scholar 

  • W.H. Bragg, W.L. Bragg: The reflection of x‑rays by crystals, Proc. R. Soc. A 88, 428–438 (1913)

    ADS  MATH  Google Scholar 

  • M. von Laue: Zur Optik der Raumgitter, Phys. Z. 14, 1040–1041 (1913)

    MATH  Google Scholar 

  • M. von Laue: Zur Optik der Raumgitter, Phys. Z. 14, 1286–1287 (1913)

    MATH  Google Scholar 

  • I.K. Robinson: Crystal truncation rods and surface roughness, Phys. Rev. B 33, 3830–3836 (1986)

    ADS  Google Scholar 

  • I.K. Robinson: X‑ray crystallography of surfaces and interfaces, Acta Crystallogr. A 54, 772–778 (1998)

    Google Scholar 

  • R. Feidenhans'l: Surface structure determination by x‑ray diffraction, Surf. Sci. Rep. 10, 105–188 (1989)

    ADS  Google Scholar 

  • A. Stierle, J. Gustafson, E. Lundgren: Surface-sensitive x‑ray diffraction across the pressure gap. In: Operando Research in Heterogeneous Catalysis, Springer Series in Chemical Physics, Vol. 114, ed. by J. Frenken, I. Groot (Springer, Cham 2017) pp. 59–87

    Google Scholar 

  • I.K. Robinson: Surface crystallography. In: Handbook of Synchrotron Radiation, ed. by D.E. Moncton, G.S. Brown (Elsevier, Amsterdam 1990)

    Google Scholar 

  • A.L. Patterson: A direct method for the determination of the components of interatomic distances in crystals, Z. Kristallogr. 90, 517 (1935)

    MATH  Google Scholar 

  • I.K. Robinson: Direct determination of the Au(110) reconstructed surface by x‑ray diffraction, Phys. Rev. Lett. 50, 1145–1148 (1983)

    ADS  Google Scholar 

  • E. Lundgren, C. Zhang, L.R. Merte, M. Shipilin, S. Blomberg, U. Hejral, J. Zhou, J. Zetterberg, J. Gustafson: Novel in situ techniques for studies of model catalysts, Acc. Chem. Res. 50, 2326–2333 (2017)

    Google Scholar 

  • Y. Gründer, C.A. Lucas: Surface x‑ray diffraction studies of single crystal electrocatalysts, Nano Energy 29, 378–393 (2016)

    Google Scholar 

  • J. Zegenhagen: Surface structure determination with x‑ray standing waves, Surf. Sci. Rep. 18, 199 (1993)

    ADS  Google Scholar 

  • D.P. Woodruff: Surface structure determination using x‑ray standing waves, Rep. Prog. Phys. 68, 743 (2005)

    ADS  Google Scholar 

  • J.C. Woicik: Site-specific x‑ray photoelectron spectroscopy using x‑ray standing waves, Nucl. Instrum. Methods Phys. Res. A 547, 227–234 (2005)

    ADS  Google Scholar 

  • J. Zegenhagen, A. Kazimirov: The X‑Ray Standing Wave Technique—Principles and Applications (World Scientific, Singapore 2013)

    Google Scholar 

  • M. Yu, N. Bovet, C.J. Satterley, S. Bengió, K.R.J. Lovelock, P.K. Milligan, R.G. Jones, D.P. Woodruff, V. Dhanak: True nature of an archetypal self-assembly system: Mobile Au-thiolate species on Au(111), Phys. Rev. Lett. 97(16), 166102 (2006)

    ADS  Google Scholar 

  • A. Hauschild, R. Temirov, S. Soubatch, O. Bauer, A. Schöll, B.C.C. Cowie, T.-L. Lee, F.S. Tautz, M. Sokolowski: Normal-incidence x‑ray standing-wave determination of the adsorption geometry of PTCDA on Ag(111): Comparison of the ordered room-temperature and disordered low-temperature phases, Phys. Rev. B 81, 125432 (2010)

    ADS  Google Scholar 

  • S. Nemsak, A. Shavorskiy, O. Karslioglu, I. Zegkinoglou, A. Rattanachata, C.S. Conlon, A. Keqi, P.K. Greene, E.C. Burks, F. Salmassi, E.M. Gullikson, S.-H. Yang, K. Liu, H. Bluhm, C.S. Fadley: Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission, Nat. Commun. 5, 5441 (2014)

    ADS  Google Scholar 

  • M.A. Van Hove, K. Hermann, P.R. Watson: The NIST surface structure database—SSD version 4, Acta Crystallogr. B 58, 338–342 (2002)

    Google Scholar 

  • H. Ohtani, C.-T. Kao, M.A. Van Hove, G.A. Somorjai: A tabulation and classification of the structures of clean solid surfaces and of adsorbed atomic and molecular monolayers as determined from low energy electron diffraction patterns, Prog. Surf. Sci. 23, 155–316 (1986)

    ADS  Google Scholar 

  • P.R. Watson: Critical compilation of surface structures determined by low-energy electron diffraction crystallography, J. Phys. Chem. Ref. Data 16, 953–992 (1987)

    ADS  Google Scholar 

  • H.B. Nielsen, D.L. Adams: R-factor analysis of the effect of non-structural parameters in LEED, applied to Al(111), J. Phys. C Solid State Phys. 15, 615–632 (1982)

    ADS  Google Scholar 

  • J.N. Andersen, H.B. Nielsen, L. Petersen, D.L. Adams: Oscillatory relaxation of the Al(110) surface, J. Phys. C 17(1), 173 (1984)

    ADS  Google Scholar 

  • P. Kaukasoina, M. Lindroos, R.D. Diehl, D. Fisher, S. Chandavarkar, I.R. Collins: LEED determination of the structures of Ni(111) and the p(2*2) overlayer of potassium on Ni(111), J. Phys. Condens. Matter 5, 2875–2886 (1993)

    ADS  Google Scholar 

  • W. Oed, H. Lindner, U. Starke, K. Heinz, K. Müller: Adsorbate-induced relaxation and reconstruction of c(2x2)O/Ni(100): A reinvestigation by LEED structure analysis, Surf. Sci. 224, 179–194 (1989)

    ADS  Google Scholar 

  • D.L. Adams, L.E. Petersen, C.S. Sorensen: Oscillatory relaxation of the Ni(110) surface: A LEED study, J. Phys. C Solid State Phys. 18, 1753–1766 (1985)

    ADS  Google Scholar 

  • S.P. Tear, K. Röll, M. Prutton: A comparison of reliability (R) factors in a LEED structural analysis of the copper (111) surface, J. Phys. C Solid State Phys. 14, 3297–3311 (1981)

    ADS  Google Scholar 

  • H.L. Davis, J.R. Noonan: Multilayer relaxation in metallic surfaces as demonstrated by LEED analysis, Surf. Sci. 126, 245–252 (1983)

    ADS  Google Scholar 

  • A. Schmidt, W. Meier, L. Hammer, K. Heinz: Deep-going reconstruction of Ir(100)-5×1, J. Phys. Condens. Matter 14, 12353–12365 (2002)

    ADS  Google Scholar 

  • K. Johnson, Q. Ge, S. Titmuss, D.A. King: Unusual bridged site for adsorbed oxygen adatoms: Theory and experiment of Ir{100}-1×2-O, J. Chem. Phys. 112, 10460 (2000)

    ADS  Google Scholar 

  • C.-M. Chan, M.A. Van Hove: Confirmation of the missing-row model with three-layer relaxations for the reconstructed Ir(110)-1×2 surface, Surf. Sci. 171, 226–238 (1986)

    ADS  Google Scholar 

  • D.L. Adams, H.B. Nielsen, M.A. Van Hove: Quantitative analysis of low-energy-electron diffraction: Application to Pt(111), Phys. Rev. B 20, 4789–4806 (1979)

    ADS  Google Scholar 

  • E.C. Sowa, M.A. Van Hove, D.L. Adams: The missing-row model for the reconstructed Pt(110)-1×2 surface: A leed intensity analysis showing multilayer distortions, Surf. Sci. 199, 174–182 (1988)

    ADS  Google Scholar 

  • D.L. Abernathy, D. Gibbs, G. Grübel, K.G. Huang, S.G.J. Mochrie, A.R. Sandy, D.M. Zehner: Reconstruction of the (111) and (001) surfaces of Au and Pt: Thermal behavior, Surf. Sci. 283, 260–276 (1993)

    ADS  Google Scholar 

  • B.M. Ocko, D. Gibbs, K.G. Huang, D.M. Zehner, S.G.J. Mochrie: Structure and phases of the Au(001) surface: Absolute x‑ray reflectivity, Phys. Rev. B 44, 6429–6443 (1991)

    ADS  Google Scholar 

  • W. Moritz, D. Wolf: Multilayer distortion in the reconstructed (110) surface of Au, Surf. Sci. 163, L655–L665 (1985)

    ADS  Google Scholar 

  • G. Michalk, W. Moritz, H. Pfnür, D. Menzel: A LEED determination of the structures of Ru(001) and of CO Ru(001)\((\sqrt{3}\times\sqrt{3})\mathrm{R}30^{\circ}\), Surf. Sci. 129, 92–106 (1983)

    ADS  Google Scholar 

  • H.A. Etman, Z.V. Zheleva, G. Held, R.A. Bennett: Epitaxial growth of ultrathin palladium films on Re{0001}, J. Phys. Chem. C 115, 4191–4199 (2011)

    Google Scholar 

  • H.L. Davis, D.M. Zehner: Structure of the clean Re(1010) surface, J. Vac. Sci. Technol. 18, 190–193 (1980)

    ADS  Google Scholar 

  • M.A. Van Hove, S.Y. Tong: Surface structures of W(110) and W(100) faces by the dynamical LEED approach, Surf. Sci. 54, 91–100 (1976)

    ADS  Google Scholar 

  • F.S. Marsh, M.K. Debe, D.A. King: W(001) 1×1 surface structure: Pseudo-relativistic LEED calculations and R-factor analysis, J. Phys. C 13, 2799–2805 (1980)

    ADS  Google Scholar 

  • J.V. Barth, H. Brune, R.J. Behm, G. Ertl: Scanning tunneling microscopy observations on the reconstructed Au(111) surface—atomic-atructure, long-range superstructure, rotational domains, and surface-defects, Phys. Rev. B 42, 9307–9318 (1990)

    ADS  Google Scholar 

  • D.L. Adams, H.B. Nielsen, M.A. Van Hove, A. Ignatiev: LEED study of the Pt(110)-1×2 surface, Surf. Sci. 104, 47 (1981)

    ADS  Google Scholar 

  • D.L. Abernathy, S.G.J. Mochrie, D.M. Zehner, G. Grübel, D. Gibbs: Orientational epitaxy and lateral structure of the hexagonally reconstructed Pt(001) and Au(001) surfaces, Phys. Rev. B 45, 9272–9291 (1992)

    ADS  Google Scholar 

  • L. Vattuone, L. Savioa, M. Rocca: Bridging the structure gap: Chemistry of nanostructured surfaces at well-defined defects, Surf. Sci. Rep. 63, 101 (2008)

    ADS  Google Scholar 

  • G.A. Somorjai, C. Aliaga: Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts, Langmuir 26, 16190–16203 (2010)

    Google Scholar 

  • C.F. McFadden, P.S. Cremer, A.J. Gellman: Adsorption of chiral alcohols on chiral metal surfaces, Langmuir 12, 2483 (1996)

    Google Scholar 

  • S. Pratt, S.J. Jenkins, D.A. King: The symmetry and structure of crystalline surfaces, Surf. Sci. 585, L159 (1997)

    Google Scholar 

  • S.J. Jenkins, S. Pratt: Beyond the surface atlas: A roadmap and gazetteer for surface symmetry and structure, Surf. Sci. Rep. 62, 373–429 (2007)

    ADS  Google Scholar 

  • G. Held, M.J. Gladys: The chemistry of intrinsically chiral surfaces, Top. Catal. 48, 128–136 (2008)

    Google Scholar 

  • S.R. Puisto, G. Held, D.A. King: Energy-dependent cancellation of diffraction spots due to surface roughening, Phys. Rev. Lett. 95, 036102 (2005)

    ADS  Google Scholar 

  • S.R. Puisto, G. Held, V. Ranea, S.J. Jenkins, E.E. Mola, D.A. King: The structure of the chiral Pt{531} surface: A combined LEED and DFT study, J. Phys. Chem. B 109, 22456–22462 (2005)

    Google Scholar 

  • G. Jones, M. Gladys, J. Ottal, S.J. Jenkins, G. Held: Surface geometry of Cu{531}, Phys. Rev. B 79, 165420 (2009)

    ADS  Google Scholar 

  • T.D. Power, A. Asthagiri, D.S. Sholl: Atomically detailed models of the effect of thermal roughening on the enantiospecificity of naturally chiral platinum surfaces, Langmuir 18, 3737 (2002)

    Google Scholar 

  • T. Seyller, R.D. Diehl, F. Jona: Low-energy electron diffraction study of the multilayer relaxation of Cu(211), J. Vac. Sci. Technol. A 17, 1635–1638 (1999)

    ADS  Google Scholar 

  • Ismail, S. Chandravakar, D.M. Zehne: Multilayer relaxation of the Cu(210) surface, Surf. Sci. 504, L201–L207 (2002)

    Google Scholar 

  • Y.Y. Sun, H. Xu, J.C. Zheng, J.Y. Zhou, Y.P. Feng, A.C.H. Huan, A.T.S. Wee: Multilayer relaxation of Cu(210) studied by layer-doubling LEED analysis and pseudopotential density functional theory calculations, Phys. Rev. B 68, 115420–115425 (2003)

    ADS  Google Scholar 

  • X.-G. Zhang, M.A. Van Hove, G.A. Somorjai, P.J. Rous, D. Tobin, A. Gonis, J.M. MacLaren, K. Heinz, M. Michl, H. Lindner, K. Müller, M. Ehsasi, J.H. Block: Efficient determiniation of multilayer relaxation in the Pt(210) stepped and densely kinked surface, Phys. Rev. Lett. 67, 1298–1301 (1991)

    ADS  Google Scholar 

  • S.R. Parkin, P.R. Watson, R.A. McFarline, K.A.R. Mitchell: A revised LEED determination of the relaxations present at the (311) surface of copper, Solid State Commun. 78, 841–843 (1991)

    ADS  Google Scholar 

  • Y. Tian, J. Quinn, K.-W. Lin, F. Jona: Structure of stepped surfaces: Cu{320}, Phys. Rev. B 61, 4904–4909 (2000)

    ADS  Google Scholar 

  • M. Hirsimäki, T. Pitkänen, M. Valden, M. Lindroos, C.J. Barnes: Multilayer relaxation of the Pd(320) surface, Surf. Sci. 454–456, 6–10 (2000)

    ADS  Google Scholar 

  • F. Mehmood, A. Kara, T.S. Rahman: First principles study of the electronic and geometric structure of Cu(532), Surf. Sci. 600, 4501–4507 (2006)

    ADS  Google Scholar 

  • Y.Y. Sun, H. Xu, Y.P. Feng, A.C.H. Huan, A.T.S. Wee: Multilayer relaxations of (3 1 1), (3 3 1) and (2 1 0) fcc transition metal surfaces studied by pseudopotential DFT calculations, Surf. Sci. 548, 309–316 (2004)

    ADS  Google Scholar 

  • X. Zhao, S.S. Perry: Ordered adsorption of ketones on Cu(6 4 3) revealed by scanning tunneling microscopy, J. Mol. Catal. A 216, 257 (2004)

    Google Scholar 

  • P.J. Knight, S.M. Driver, D.P. Woodruff: Scanning tunnelling microscopy investigation of the oxygen induced faceting and “nano-faceting” of a vicinal copper surface, Surf. Sci. 376, 374 (1997)

    ADS  Google Scholar 

  • M. Giesen, S. Dieluweit: Step dynamics and step-step interactions on the chiral Cu(5 8 90) surface, J. Mol. Catal. A 216, 263–274 (2004)

    Google Scholar 

  • N. Freyer, M. Kiskinova, G. Pirug, H.P. Bonzel: Site-specific core level spectroscopy of CO and NO adsorption on Pt(110)(1×2) and (1×1) surfaces, Appl. Phys. A 39, 209–219 (1986)

    ADS  Google Scholar 

  • N. Freyer, M. Kiskinova, G. Pirug, H.P. Bonzel: Oxygen adsorption on Pt(110)-1×1 and Pt(110)-1×1, Surf. Sci. 166, 206–220 (1986)

    ADS  Google Scholar 

  • S. Karakatsani, Q. Ge, M.J. Gladys, G. Held, D.A. King: Coverage-dependent molecular tilt of carbon monoxide chemisorbed on Pt{110}: A combined LEED and DFT structural analysis calculations, Surf. Sci. 606, 383–393 (2012)

    ADS  Google Scholar 

  • Z.V. Zheleva, V.R. Dhanak, G. Held: Experimental structure determination of the chemisorbed overlayers of chlorine and iodine on Au{111}, Phys. Chem. Chem. Phys. 12, 10754–10758 (2010)

    Google Scholar 

  • P.J. Knight, S.M. Driver, D.P. Woodruff: Oxygen-induced step-edge faceting; a precursor to (410) planar faceting of Cu(100) vicinal surfaces, Chem. Phys. Lett. 259, 503–507 (1996)

    ADS  Google Scholar 

  • P.J. Knight, S.M. Driver, D.P. Woodruff: Missing rows on oxygen-covered Cu(100) vicinal surfaces: A scanning tunnelling microscopy investigation, J. Phys. Condens. Matter 9, 21–31 (1997)

    ADS  Google Scholar 

  • I. Ermanoski, K. Pelhos, W. Chen, J.S. Quinton, T.E. Madey: Oxygen-induced nano-faceting of Ir(2 1 0), Surf. Sci. 549, 1 (2004)

    ADS  Google Scholar 

  • R. Koch, O. Haase, M. Borbonus, K.H. Rieder: Can oxygen modify step arrangements? STM and LEED investigations on Ni(771), Surf. Sci. 272, 17–26 (1992)

    ADS  Google Scholar 

  • G. Hoogers, D.A. King: Adsorbate-induced step-doubling reconstruction of a vicinal metal surface: Oxygen on Rh{332}, Surf. Sci. 286, 306–316 (1993)

    ADS  Google Scholar 

  • G. Held, S. Uremovic, D. Menzel: Rearrangement of stepped Ru(001) surfaces upon oxygen adsorption, Surf. Sci. 331–333, 1122–1128 (1995)

    ADS  Google Scholar 

  • J. Pal, T.B. Rawal, M. Smerieri, S. Hong, M. Alatalo, L. Savio, L. Vattuone, T.S. Rahman, M. Rocca: Adatom extraction from pristine metal terraces by dissociative oxygen adsorption: Combined STM and density functional theory investigation of O/Ag(110), Phys. Rev. Lett. 118, 226101 (2017)

    ADS  Google Scholar 

  • T.B. Rawal, M. Smerieri, J. Pal, S. Hong, M. Alatalo, L. Savio, L. Vattuone, T.S. Rahman, M. Rocca: Deciphering complex features in STM images of O adatoms on Ag(110), Phys. Rev. B 98, 035405 (2018)

    ADS  Google Scholar 

  • W. Braun, H.-P. Steinrück, G. Held: The surface geometry of carbonmonoxide and hydrogen co-adsorbed on Ni{111}, Surf. Sci. 574, 193–204 (2005)

    ADS  Google Scholar 

  • A. Michaelides, A. Alavi, D.A. King: Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles calculations, Phys. Rev. B 69(11), 113404 (2004)

    ADS  Google Scholar 

  • P.A. Thiel, T.E. Madey: The interaction of water with solid surfaces: Fundamental aspects, Surf. Sci. Rep. 7, 221 (1987)

    ADS  Google Scholar 

  • M.A. Henderson: The interaction of water with solid surfaces: Fundamental aspects revisited, Surf. Sci. Rep. 46, 1 (2002)

    ADS  Google Scholar 

  • A. Hodgson, S. Haq: Water adsorption and the wetting of metal surfaces, Surf. Sci. Rep. 64, 381 (2009)

    ADS  Google Scholar 

  • G. Held, D. Menzel: The structure of the \(\mathrm{p}(\sqrt{3}\times\sqrt{3})\mathrm{R}30^{\circ}\) bilayer of D2O on Ru(001), Surf. Sci. 316, 92 (1994)

    ADS  Google Scholar 

  • P.J. Feibelman: Partial dissociation of water on Ru(0001), Science 295, 99–102 (2002)

    ADS  Google Scholar 

  • S.R. Puisto, T.J. Lerotholi, G. Held, D. Menzel: A refined LEED analysis of water on Ru(0001): An experimental test of the partial dissociation model, Surf. Rev. Lett. 10, 487–492 (2003)

    ADS  Google Scholar 

  • G. Held, C. Clay, S.D. Barrett, S. Haq, A. Hodgson: The structure of the mixed OH+H2O overlayer on Pt{111}, J. Chem. Phys. 123, 64711 (2005)

    Google Scholar 

  • M.E. Gallagher, S. Haq, A. Omer, A. Hodgson: Water monolayer and multilayer adsorption on Ni(111), Surf. Sci. 601, 268–273 (2007)

    ADS  Google Scholar 

  • A. Shavorskiy, M. Gladys, G. Held: Chemical composition and reactivity of water on hexagonal Pt–group metal surfaces, Phys. Chem. Chem. Phys. 10, 6150 (2008)

    Google Scholar 

  • F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Lægsgaard, I. Stensgaard, C. Joachim, F. Besenbacher: Properties of large organic molecules on metal surfaces, Prog. Surf. Sci. 71, 95 (2003)

    ADS  Google Scholar 

  • C.J. Baddeley, G. Held: Chiral molecules on surfaces. In: Comprehensive Nanoscience and Technology, ed. by D. Andrews, G. Scholes, G. Wiederrecht (Elsevier, Amsterdam 2010) pp. 105–133

    Google Scholar 

  • D. Costa, C.-M. Pradier, F. Tielens, L. Savio: Adsorption and self-assembly of bio-organic molecules at model surfaces: A route towards increased complexity, Surf. Sci. Rep. 70, 449–553 (2015)

    ADS  Google Scholar 

  • X. Zhao, Z. Gai, R.G. Zhao, W.S. Yang, T. Sakurai: Adsorption of glycine on Cu(001) and related step faceting and bunching, Surf. Sci. 424, L347–L351 (1999)

    ADS  Google Scholar 

  • X. Zhao, R.G. Zhao, W.S. Yang: Adsorption of alanine on Cu(001) studied by scanning tunneling microscopy, Surf. Sci. 442, L995–L1000 (1999)

    ADS  Google Scholar 

  • X. Zhao: Fabricating homochiral facets on Cu(001) with -lysine, J. Am. Chem. Soc. 122, 12584–12585 (2000)

    Google Scholar 

  • X. Zhao, R.G. Zhao, W.S. Yang: Scanning tunneling microscopy investigation of -lysine adsorbed on Cu(001), Langmuir 16, 9812–9818 (2000)

    Google Scholar 

  • Q. Chen, N.V. Richardson: Surface facetting induced by adsorbates, Prog. Surf. Sci. 73, 59–77 (2003)

    ADS  Google Scholar 

  • Z.V. Zheleva, T. Eralp, G. Held: Complete experimental structure determination of the p(3×2)pg phase of glycine on Cu110, J. Phys. Chem. C 116, 618–625 (2012)

    Google Scholar 

  • N.A. Booth, D.P. Woodruff, O. Schaff, T. Gießel, R. Lindsay, P. Baumgärtel, A.M. Bradshaw: Determination of the local structure of glycine adsorbed on Cu(110), Surf. Sci. 397, 258–264 (1998)

    ADS  Google Scholar 

  • J.-H. Kang, R.L. Toomes, M. Polcik, M. Kittel, J.-T. Hoeft, V. Efstathiou, D.P. Woodruff, A.M. Bradshaw: Structural investigation of glycine on Cu(100) and comparison to glycine on Cu(110), J. Chem. Phys. 118(13), 6059–6071 (2003)

    ADS  Google Scholar 

  • R.L. Toomes, J.-H. Kang, D.P. Woodruff, M. Polcik, M. Kittel, J.-T. Hoeft: Can glycine form homochiral structural domains on low-index copper surfaces, Surf. Sci. Lett. 522, L9–L14 (2003)

    Google Scholar 

  • D.A. Duncan, K.M. Bradley, W. Unterberger, D. Kreikemeyer-Lorenzo, J. Robinson, D.P. Woodruff: Deprotonated glycine on Cu(111): Quantitative structure determination by energy-scanned photoelectron diffraction, J. Phys. Chem. C 116, 9985–9995 (2012)

    Google Scholar 

  • Q. Chen, D.J. Frankel, N.V. Richardson: Chemisorption induced chirality: Glycine on Cu {110}, Surf. Sci. 497, 37–46 (2002)

    ADS  Google Scholar 

  • G. Jones, S.J. Jenkins, D.A. King: Hydrogen bonds at metal surfaces: Universal scaling and quantification of substrate effects, Surf. Sci. 600, L224–L228 (2006)

    ADS  Google Scholar 

  • D.C. Jackson, D.A. Duncan, W. Unterberger, T.J. Lerotholi, D. Kreikemeyer Lorenzo, M.K. Bradley, D.P. Woodruff: Structure of cytosine on Cu(110): A scanned-energy mode photoelectron diffraction study, J. Phys. Chem. C 114, 15454–15463 (2010)

    Google Scholar 

  • F. Allegretti, M. Polcik, D.P. Woodruff: Quantitative determination of the local structure of thymine on Cu(110) using scanned-energy mode photoelectron diffraction, Surf. Sci. 601, 3611–3622 (2007)

    ADS  Google Scholar 

  • C.J. Baddeley, T.E. Jones, A.G. Trant, K.E. Wilson: Fundamental investigations of enantioselective heterogeneous catalysis, Top. Catal. 54, 1348–1356 (2011)

    Google Scholar 

  • G. Held, W. Braun, H.-P. Steinrück, S. Yamagishi, S.J. Jenkins, D.A. King: Light-atom location in adsorbed benzene by experiment and theory, Phys. Rev. Lett. 87, 216102 (2001)

    ADS  Google Scholar 

  • G. Held, H.-P. Steinrück: Cyclic Hydrocarbons (3.8.7). In: Physics of Covered Surfaces, A. Adsorbed Layers on Surfaces, Landolt-Börnstein, New Series III, Vol. 42, ed. by H.P. Bonzel (Springer, Berlin, Heidelberg 2005), Chap. 3.8.7

    Google Scholar 

  • F.S. Tautz: Structure and bonding of large aromatic molecules on noble metal surfaces: The example of PTCDA, Prog. Surf. Sci. 82, 479–520 (2007)

    ADS  Google Scholar 

  • A. Hauschild, K. Karki, B.C.C. Cowie, M. Rohlfing, F.S. Tautz, M. Sokolowski: Molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface, Phys. Rev. Lett. 94, 036106 (2005)

    ADS  Google Scholar 

  • A. Gerlach, S. Sellner, F. Schreiber, N. Koch, J. Zegenhagen: Substrate-dependent bonding distances of PTCDA: A comparative x‑ray standing-wave study on Cu(111) and Ag(111), Phys. Rev. B 75, 045401 (2005)

    ADS  Google Scholar 

  • S.K.M. Henze, O. Bauer, T.-L. Lee, M. Sokolowski, F.S. Tautz: Vertical bonding distances of PTCDA on Au(111) and Ag(111): Relation to the bonding type, Surf. Sci. 601, 1566–1573 (2007)

    ADS  Google Scholar 

  • M. Rohlfing, R. Temirov, F.S. Tautz: Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111), Phys. Rev. B 76, 115421 (2007)

    ADS  Google Scholar 

  • O. Bauer, G. Mercurio, M. Willenbockel, W. Reckien, C.H. Schmitz, B. Fiedler, S. Soubatch, T. Bredow, F.S. Tautz, M. Sokolowski: Role of functional groups in surface bonding of planar π-conjugated molecules, Phys. Rev. B 86, 235431 (2012)

    ADS  Google Scholar 

  • G. Mercurio, O. Bauer, M. Willenbockel, N. Fairley, W. Reckien, C.H. Schmitz, B. Fiedler, S. Soubatch, T. Bredow, M. Sokolowski, F.S. Tautz: Adsorption height determination of nonequivalent C and O species of PTCDA on Ag(110) using x‑ray standing waves, Phys. Rev. B 87, 045421 (2013)

    ADS  Google Scholar 

  • S. Weiß, I. Krieger, T. Heepenstrick, S. Soubatch, M. Sokolowski, F.S. Tautz: Determination of the adsorption geometry of PTCDA on the Cu(100) surface, Phys. Rev. B 96, 075414 (2017)

    ADS  Google Scholar 

  • M. Willenbockel, D. Lüftner, B. Stadtmüller, G. Koller, C. Kumpf, S. Soubatch, P. Puschnig, M.G. Ramsey, F.S. Tautz: The interplay between interface structure, energy level alignment and chemical bonding strength at organic–metal interfaces, Phys. Chem. Chem. Phys. 17, 1530–1548 (2015)

    Google Scholar 

  • J. Wintterlin, M.-L. Bocquet: Graphene on metal surfaces, Surf. Sci. 603, 1841–1852 (2009)

    ADS  Google Scholar 

  • M. Batzill: The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects, Surf. Sci. Rep. 67, 83–115 (2012)

    ADS  Google Scholar 

  • Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, C. Oshima: Atomic structure of monolayer graphite formed on Ni(111), Surf. Sci. 374, 61–64 (1997)

    ADS  Google Scholar 

  • D. Eom: Structure and electronic properties of graphene nanoislands on Co(0001), Nano Lett. 9, 2844–2848 (2009)

    ADS  Google Scholar 

  • P. Sutter, J.T. Sadowski, E. Sutter: Graphene on Pt(111): Growth and substrate interaction, Phys. Rev. B 80, 245411 (2009)

    ADS  Google Scholar 

  • W. Moritz, B. Wang, M.-L. Bocquet, T. Brugger, T. Greber, J. Wintterlin, S. Günther: Structure determination of the coincidence phase of graphene on Ru(0001), Phys. Rev. Lett. 104, 136102 (2010)

    ADS  Google Scholar 

  • H.I. Li, K. Pussi, K.J. Hanna, L.-L. Wang, D.D. Johnson, H.-P. Cheng, H. Shin, S. Curtarolo, W. Moritz, J.A. Smerdon, R. McGrath, R.D. Diehl: Surface geometry of C60 on Ag(111), Phys. Rev. Lett. 103, 056101 (2009)

    ADS  Google Scholar 

  • C. Busse, P. Lazić, R. Djemour, J. Coraux, T. Gerber, N. Atodiresei, V. Caciuc, R. Brako, A.T. N'Diaye, S. Blügel, J. Zegenhagen, T. Michely: Graphene on Ir(111): Physisorption with chemical modulation, Phys. Rev. Lett. 107, 036101 (2011)

    ADS  Google Scholar 

  • E. Miniussi, M. Pozzo, A. Baraldi, E. Vesselli, R.R. Zhan, G. Comelli, T.O. Menteş, M.A. Niño, A. Locatelli, S. Lizzit, D. Alfè: Thermal stability of corrugated epitaxial graphene grown on Re(0001), Phys. Rev. Lett. 106, 216101 (2011)

    ADS  Google Scholar 

  • R. Felici, M. Pedio, F. Borgatti, S. Iannotta, M. Capozi, G. Ciullo, A. Stierle: X‑ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption, Nat. Mater. 4, 688–692 (2005)

    ADS  Google Scholar 

  • G. Xu, X.-Q. Shi, R.Q. Zhang, W.W. Pai, H.T. Jeng, M.A. Van Hove: Detailed low-energy electron diffraction analysis of the (4×4) surface structure of C60 on Cu(111): Seven-atom-vacancy reconstruction, Phys. Rev. B 86, 075419 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Held .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Held, G. (2020). Crystallography of Metal Surfaces and Adsorbed Layers. In: Rocca, M., Rahman, T.S., Vattuone, L. (eds) Springer Handbook of Surface Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-46906-1_7

Download citation

Publish with us

Policies and ethics